ﻻ يوجد ملخص باللغة العربية
It plays a fundamental role to compactly represent the visual information towards the optimization of the ultimate utility in myriad visual data centered applications. With numerous approaches proposed to efficiently compress the texture and visual features serving human visual perception and machine intelligence respectively, much less work has been dedicated to studying the interactions between them. Here we investigate the integration of feature and texture compression, and show that a universal and collaborative visual information representation can be achieved in a hierarchical way. In particular, we study the feature and texture compression in a scalable coding framework, where the base layer serves as the deep learning feature and enhancement layer targets to perfectly reconstruct the texture. Based on the strong generative capability of deep neural networks, the gap between the base feature layer and enhancement layer is further filled with the feature level texture reconstruction, aiming to further construct texture representation from feature. As such, the residuals between the original and reconstructed texture could be further conveyed in the enhancement layer. To improve the efficiency of the proposed framework, the base layer neural network is trained in a multi-task manner such that the learned features enjoy both high quality reconstruction and high accuracy analysis. We further demonstrate the framework and optimization strategies in face image compression, and promising coding performance has been achieved in terms of both rate-fidelity and rate-accuracy.
Existing compression methods typically focus on the removal of signal-level redundancies, while the potential and versatility of decomposing visual data into compact conceptual components still lack further study. To this end, we propose a novel conc
In this paper, we propose a scalable image compression scheme, including the base layer for feature representation and enhancement layer for texture representation. More specifically, the base layer is designed as the deep learning feature for analys
In this paper, we propose a novel end-to-end feature compression scheme by leveraging the representation and learning capability of deep neural networks, towards intelligent front-end equipped analysis with promising accuracy and efficiency. In parti
Some forms of novel visual media enable the viewer to explore a 3D scene from arbitrary viewpoints, by interpolating between a discrete set of original views. Compared to 2D imagery, these types of applications require much larger amounts of storage
Hybrid-distorted image restoration (HD-IR) is dedicated to restore real distorted image that is degraded by multiple distortions. Existing HD-IR approaches usually ignore the inherent interference among hybrid distortions which compromises the restor