ترغب بنشر مسار تعليمي؟ اضغط هنا

NOM: Network-On-Memory for Inter-Bank Data Transfer in Highly-Banked Memories

52   0   0.0 ( 0 )
 نشر من قبل Seyyed Hossein SeyyedAghaei Rezaei
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Data copy is a widely-used memory operation in many programs and operating system services. In conventional computers, data copy is often carried out by two separate read and write transactions that pass data back and forth between the DRAM chip and the processor chip. Some prior mechanisms propose to avoid this unnecessary data movement by using the shared internal bus in the DRAM chip to directly copy data within the DRAM chip (e.g., between two DRAM banks). While these methods exhibit superior performance compared to conventional techniques, data copy across different DRAM banks is still greatly slower than data copy within the same DRAM bank. Hence, these techniques have limited benefit for the emerging 3D-stacked memories (e.g., HMC and HBM) that contain hundreds of DRAM banks across multiple memory controllers. In this paper, we present Network-on-Memory (NoM), a lightweight inter-bank data communication scheme that enables direct data copy across both memory banks of a 3D-stacked memory. NoM adopts a TDM-based circuit-switching design, where circuit setup is done by the memory controller. Compared to state-of-the-art approaches, NoM enables both fast data copy between multiple DRAM banks and concurrent data transfer operations. Our evaluation shows that NoM improves the performance of data-intensive workloads by 3.8X and 75%, on average, compared to the baseline conventional 3D-stacked DRAM architecture and state-of-the-art techniques, respectively.



قيم البحث

اقرأ أيضاً

The ever-increasing computation complexity of fast-growing Deep Neural Networks (DNNs) has requested new computing paradigms to overcome the memory wall in conventional Von Neumann computing architectures. The emerging Computing-In-Memory (CIM) archi tecture has been a promising candidate to accelerate neural network computing. However, the data movement between CIM arrays may still dominate the total power consumption in conventional designs. This paper proposes a flexible CIM processor architecture named Domino to enable stream computing and local data access to significantly reduce the data movement energy. Meanwhile, Domino employs tailored distributed instruction scheduling within Network-on-Chip (NoC) to implement inter-memory-computing and attain mapping flexibility. The evaluation with prevailing CNN models shows that Domino achieves 1.15-to-9.49$times$ power efficiency over several state-of-the-art CIM accelerators and improves the throughput by 1.57-to-12.96$times$.
Memories that exploit three-dimensional (3D)-stacking technology, which integrate memory and logic dies in a single stack, are becoming popular. These memories, such as Hybrid Memory Cube (HMC), utilize a network-on-chip (NoC) design for connecting t heir internal structural organizations. This novel usage of NoC, in addition to aiding processing-in-memory capabilities, enables numerous benefits such as high bandwidth and memory-level parallelism. However, the implications of NoCs on the characteristics of 3D-stacked memories in terms of memory access latency and bandwidth have not been fully explored. This paper addresses this knowledge gap by (i) characterizing an HMC prototype on the AC-510 accelerator board and revealing its access latency behaviors, and (ii) by investigating the implications of such behaviors on system and software designs.
Three-dimensional (3D)-stacking technology, which enables the integration of DRAM and logic dies, offers high bandwidth and low energy consumption. This technology also empowers new memory designs for executing tasks not traditionally associated with memories. A practical 3D-stacked memory is Hybrid Memory Cube (HMC), which provides significant access bandwidth and low power consumption in a small area. Although several studies have taken advantage of the novel architecture of HMC, its characteristics in terms of latency and bandwidth or their correlation with temperature and power consumption have not been fully explored. This paper is the first, to the best of our knowledge, to characterize the thermal behavior of HMC in a real environment using the AC-510 accelerator and to identify temperature as a new limitation for this state-of-the-art design space. Moreover, besides bandwidth studies, we deconstruct factors that contribute to latency and reveal their sources for high- and low-load accesses. The results of this paper demonstrates essential behaviors and performance bottlenecks for future explorations of packet-switched and 3D-stacked memories.
83 - Fei Wen , Mian Qin , Paul Gratz 2020
The current mobile applications have rapidly growing memory footprints, posing a great challenge for memory system design. Insufficient DRAM main memory will incur frequent data swaps between memory and storage, a process that hurts performance, cons umes energy and deteriorates the write endurance of typical flash storage devices. Alternately, a larger DRAM has higher leakage power and drains the battery faster. Further, DRAM scaling trends make further growth of DRAMin the mobile space prohibitive due to cost. Emerging non-volatile memory (NVM) has the potential to alleviate these issues due to its higher capacity per cost than DRAM and mini-mal static power. Recently, a wide spectrum of NVM technologies, including phase-change memories (PCM), memristor, and 3D XPoint have emerged. Despite the mentioned advantages, NVM has longer access latency compared to DRAMand NVM writes can incur higher latencies and wear costs. Therefore integration of these new memory technologies in the memory hierarchy requires a fundamental rearchitect-ing of traditional system designs. In this work, we propose a hardware-accelerated memory manager (HMMU) that addresses both types of memory in a flat space address space. We design a set of data placement and data migration policies within this memory manager, such that we may exploit the advantages of each memory technology. By augmenting the system with this HMMU, we reduce the overall memory latency while also reducing writes to the NVM. Experimental results show that our design achieves a 39% reduction in energy consumption with only a 12% performance degradation versus an all-DRAM baseline that is likely untenable in the future.
77 - Mengke Ge , Xiaobing Ni , Qi Xu 2021
Brain network is a large-scale complex network with scale-free, small-world, and modularity properties, which largely supports this high-efficiency massive system. In this paper, we propose to synthesize brain-network-inspired interconnections for la rge-scale network-on-chips. Firstly, we propose a method to generate brain-network-inspired topologies with limited scale-free and power-law small-world properties, which have a low total link length and extremely low average hop count approximately proportional to the logarithm of the network size. In addition, given the large-scale applications and the modular topology, we present an application mapping method, including task mapping and deterministic deadlock-free routing, to minimize the power consumption and hop count. Finally, a cycle-accurate simulator BookSim2 is used to validate the architecture performance with different synthetic traffic patterns and large-scale test cases, including real-world communication networks for the graph processing application. Experiments show that, compared with other topologies and methods, the NoC design generated by the proposed method presents significantly lower average hop count and lower average latency. Especially in graph processing applications with a power-law and tightly coupled inter-core communication, the brain-network-inspired NoC has up to 70% lower average hop count and 75% lower average latency than mesh-based NoCs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا