ﻻ يوجد ملخص باللغة العربية
We give an algebraic proof of the equivalence of equivariant K-semistability (resp. equivariant K-polystability) with geometric K-semistability (resp. geometric K-polystability). Along the way we also prove the existence and uniqueness of minimal optimal destabilizing centers on K-unstable log Fano pairs.
We show that for a K-unstable Fano variety, any divisorial valuation computing its stability threshold induces a non-trivial special test configuration preserving the stability threshold. When such a divisorial valuation exists, we show that the Fano
We prove a product formula for $delta$-invariant and as an application, we show that product of K-(semi, poly)stable Fano varieties is also K-(semi, poly)stable.
We prove that on any log Fano pair of dimension $n$ whose stability threshold is less than $frac{n+1}{n}$, any valuation computing the stability threshold has a finitely generated associated graded ring. Together with earlier works, this implies: (a)
We prove some criteria for uniform K-stability of log Fano pairs. In particular, we show that uniform K-stability is equivalent to $beta$-invariant having a positive lower bound. Then we study the relation between optimal destabilization conjecture a
We develop a general approach to prove K-stability of Fano varieties. The new theory is used to (a) prove the existence of Kahler-Einstein metrics on all smooth Fano hypersurfaces of Fano index two, (b) to compute the stability thresholds for hypersu