ترغب بنشر مسار تعليمي؟ اضغط هنا

Five Points to Check when Comparing Visual Perception in Humans and Machines

160   0   0.0 ( 0 )
 نشر من قبل Christina Funke
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the rise of machines to human-level performance in complex recognition tasks, a growing amount of work is directed towards comparing information processing in humans and machines. These studies are an exciting chance to learn about one system by studying the other. Here, we propose ideas on how to design, conduct and interpret experiments such that they adequately support the investigation of mechanisms when comparing human and machine perception. We demonstrate and apply these ideas through three case studies. The first case study shows how human bias can affect how we interpret results, and that several analytic tools can help to overcome this human reference point. In the second case study, we highlight the difference between necessary and sufficient mechanisms in visual reasoning tasks. Thereby, we show that contrary to previous suggestions, feedback mechanisms might not be necessary for the tasks in question. The third case study highlights the importance of aligning experimental conditions. We find that a previously-observed difference in object recognition does not hold when adapting the experiment to make conditions more equitable between humans and machines. In presenting a checklist for comparative studies of visual reasoning in humans and machines, we hope to highlight how to overcome potential pitfalls in design or inference.



قيم البحث

اقرأ أيضاً

In this paper we present an approach and a benchmark for visual reasoning in robotics applications, in particular small object grasping and manipulation. The approach and benchmark are focused on inferring object properties from visual and text data. It concerns small household objects with their properties, functionality, natural language descriptions as well as question-answer pairs for visual reasoning queries along with their corresponding scene semantic representations. We also present a method for generating synthetic data which allows to extend the benchmark to other objects or scenes and propose an evaluation protocol that is more challenging than in the existing datasets. We propose a reasoning system based on symbolic program execution. A disentangled representation of the visual and textual inputs is obtained and used to execute symbolic programs that represent a reasoning process of the algorithm. We perform a set of experiments on the proposed benchmark and compare to results for the state of the art methods. These results expose the shortcomings of the existing benchmarks that may lead to misleading conclusions on the actual performance of the visual reasoning systems.
Explaining the decision of a multi-modal decision-maker requires to determine the evidence from both modalities. Recent advances in XAI provide explanations for models trained on still images. However, when it comes to modeling multiple sensory modal ities in a dynamic world, it remains underexplored how to demystify the mysterious dynamics of a complex multi-modal model. In this work, we take a crucial step forward and explore learnable explanations for audio-visual recognition. Specifically, we propose a novel space-time attention network that uncovers the synergistic dynamics of audio and visual data over both space and time. Our model is capable of predicting the audio-visual video events, while justifying its decision by localizing where the relevant visual cues appear, and when the predicted sounds occur in videos. We benchmark our model on three audio-visual video event datasets, comparing extensively to multiple recent multi-modal representation learners and intrinsic explanation models. Experimental results demonstrate the clear superior performance of our model over the existing methods on audio-visual video event recognition. Moreover, we conduct an in-depth study to analyze the explainability of our model based on robustness analysis via perturbation tests and pointing games using human annotations.
The Abstraction and Reasoning Corpus (ARC) is a set of tasks that tests an agents ability to flexibly solve novel problems. While most ARC tasks are easy for humans, they are challenging for state-of-the-art AI. How do we build intelligent systems th at can generalize to novel situations and understand human instructions in domains such as ARC? We posit that the answer may be found by studying how humans communicate to each other in solving these tasks. We present LARC, the Language-annotated ARC: a collection of natural language descriptions by a group of human participants, unfamiliar both with ARC and with each other, who instruct each other on how to solve ARC tasks. LARC contains successful instructions for 88% of the ARC tasks. We analyze the collected instructions as `natural programs, finding that most natural program concepts have analogies in typical computer programs. However, unlike how one precisely programs a computer, we find that humans both anticipate and exploit ambiguities to communicate effectively. We demonstrate that a state-of-the-art program synthesis technique, which leverages the additional language annotations, outperforms its language-free counterpart.
In this paper, we tackle the problem of human de-occlusion which reasons about occluded segmentation masks and invisible appearance content of humans. In particular, a two-stage framework is proposed to estimate the invisible portions and recover the content inside. For the stage of mask completion, a stacked network structure is devised to refine inaccurate masks from a general instance segmentation model and predict integrated masks simultaneously. Additionally, the guidance from human parsing and typical pose masks are leveraged to bring prior information. For the stage of content recovery, a novel parsing guided attention module is applied to isolate body parts and capture context information across multiple scales. Besides, an Amodal Human Perception dataset (AHP) is collected to settle the task of human de-occlusion. AHP has advantages of providing annotations from real-world scenes and the number of humans is comparatively larger than other amodal perception datasets. Based on this dataset, experiments demonstrate that our method performs over the state-of-the-art techniques in both tasks of mask completion and content recovery. Our AHP dataset is available at url{https://sydney0zq.github.io/ahp/}.
This paper focuses on two key problems for audio-visual emotion recognition in the video. One is the audio and visual streams temporal alignment for feature level fusion. The other one is locating and re-weighting the perception attentions in the who le audio-visual stream for better recognition. The Long Short Term Memory Recurrent Neural Network (LSTM-RNN) is employed as the main classification architecture. Firstly, soft attention mechanism aligns the audio and visual streams. Secondly, seven emotion embedding vectors, which are corresponding to each classification emotion type, are added to locate the perception attentions. The locating and re-weighting process is also based on the soft attention mechanism. The experiment results on EmotiW2015 dataset and the qualitative analysis show the efficiency of the proposed two techniques.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا