ترغب بنشر مسار تعليمي؟ اضغط هنا

A Massive Molecular Torus inside a Gas-Poor Cirnumnuclear Disk in the Radio Galaxy NGC 1052 Discovered with ALMA

50   0   0.0 ( 0 )
 نشر من قبل Seiji Kameno
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report ALMA observations of NGC 1052 to quest mass accretion in a gas-poor active galactic nucleus (AGN). We detected CO emission representing a rotating ring-like circumnuclear disk (CND) seen edge-on with the gas mass of $5.3 times 10^{5}$ M$_{odot}$. The CND has smaller gas mass than that in typical Seyfert galaxies with circumnuclear star formation and is too gas-poor to drive mass accretion onto the central engine. The continuum emission casts molecular absorption features of CO, HCN, HCO$^+$, SO, SO$_2$, CS, CN, and H$_2$O, with H$^{13}$CN and HC$^{15}$N and vibrationally-excited (v$_2 = 1$) HCN and HCO$^+$. Broader absorption line widths than CND emission line widths imply presence of a geometrically thick molecular torus with a radius of $2.4 pm 1.3$ pc and a thickness ratio of $0.7 pm 0.3$. We estimate the H$_2$ column density of $(3.3 pm 0.7) times 10^{25}$ cm$^{-2}$ using H$^{12}$CN, H$^{13}$CN, and HCO$^{+}$ absorption features and adopting abundance ratio of $^{12}$C-to-$^{13}$C and a HCO$^{+}$-to-H$_2$, and derived the torus gas mass of $(1.3 pm 0.3) times 10^7$ M$_{odot}$, which is $sim 9$% of the central black-hole mass. The molecular gas in the torus is clumpy with the estimated covering factor of $0.17^{+0.06}_{-0.03}$. The gas density of clumps inside the torus is inferred to be $(6.4 pm 1.3) times 10^7$ cm$^{-3}$, which meets the excitation conditions of H$_2$O maser. Specific angular momentum in the torus exceeds a flat-rotation curve extrapolated from that of the CND, indicating a Keplerian rotation inside a 14.4-pc sphere of influence.



قيم البحث

اقرأ أيضاً

We present multi-frequency simultaneous VLBA observations at 15, 22 and 43 GHz towards the nucleus of the nearby radio galaxy NGC 1052. These three continuum images reveal a double-sided jet structure, whose relative intensity ratios imply that the j et axis is oriented close to the sky plane. The steeply rising spectra at 15-43 GHz at the inner edges of the jets strongly suggest that synchrotron emission is absorbed by foreground thermal plasma. We detected H_2O maser emission in the velocity range of 1550-1850 km/s, which is redshifted by 50-350 km/s with respect to the systemic velocity of NGC 1052. The redshifted maser gas appears projected against both sides of the jet, similar to the HI seen in absorption. The H_2O maser gas is located where the free-free absorption opacity is large. This probably implies that the masers in NGC 1052 are associated with a circumnuclear torus or disk as in the nucleus of NGC 4258. Such circumnuclear structure can be the sense of accreting onto the central engine.
We present multi-frequency simultaneous VLBA observations at 15, 22 and 43 GHz towards the nucleus of the nearby radio galaxy NGC 1052. These three continuum images reveal a double-sided jet structure, whose relative intensity ratios imply that the j et axis is oriented close to the sky plane. The steeply rising spectra at 15-43 GHz at the inner edges of the jets strongly suggest that synchrotron emission is absorbed by foreground thermal plasma. We detected H2O maser emission in the velocity range of 1550-1850 km/s, which is redshifted by 50-350 km/s with respect to the systemic velocity of NGC 1052. The redshifted maser gas appears projected against both sides of the jet, in the same manner as the HI seen in absorption. The H2O maser gas are located where the free-free absorption opacity is large. This probably imply that the masers in NGC 1052 are associated with a circumnuclear torus or disk as in the nucleus of NGC 4258. Such circumnuclear structure can be the sence of accreting onto the central engine.
We report new ALMA observations of the CO(3-2) line emission from the $2.1pm0.3times10^{10}rmthinspace M_{odot}$ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fuelling a vigorous starburst at a rate o f $500-800rmthinspace M_{odot}rm; yr^{-1}$ and powerful black hole activity in the form of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each $10-20rm; kpc$ long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. The very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.
76 - Mireia Montes 2021
Using ultra-deep imaging ($mu_g = 30.4$ mag/arcsec$^2$; 3$sigma$, 10x10), we probed the surroundings of the first galaxy lacking dark matter KKS2000[04] (NGC 1052-DF2). Signs of tidal stripping in this galaxy would explain its claimed low content of dark matter. However, we find no evidence of tidal tails. In fact, the galaxy remains undisturbed down to a radial distance of 80 arcsec. This radial distance triples previous spatial explorations of the stellar distribution of this galaxy. In addition, the distribution of its globular clusters (GCs) is not extended in relation to the bulk of the galaxy (the radius containing half of the GCs is 21 arcsec). We also found that the surface brightness radial profiles of this galaxy in the g and r bands decline exponentially from 35 to 80 arcsec. That, together with a constant ellipticity and position angle in the outer parts of the galaxy strongly suggests the presence of a low-inclination disk. This is consistent with the evidence of rotation found for this object. This finding implies that the dynamical mass of this galaxy is a factor of 2 higher than previously reported, bringing the dark matter content of this galaxy in line with galaxies of similar stellar mass.
Pairs of azimuthal intensity decrements at near symmetric locations have been seen in a number of protoplanetary disks. They are most commonly interpreted as the two shadows cast by a highly misaligned inner disk. Direct evidence of such an inner dis k, however, remain largely illusive, except in rare cases. In 2012, a pair of such shadows were discovered in scattered light observations of the near face-on disk around 2MASS J16042165-2130284, a transitional object with a cavity $sim$60 AU in radius. The star itself is a `dipper, with quasi-periodic dimming events on its light curve, commonly hypothesized as caused by extinctions by transiting dusty structures in the inner disk. Here, we report the detection of a gas disk inside the cavity using ALMA observations with $sim0$farcs2 angular resolution. A twisted butterfly pattern is found in the moment 1 map of CO (3-2) emission line towards the center, which is the key signature of a high misalignment between the inner and outer disks. In addition, the counterparts of the shadows are seen in both dust continuum emission and gas emission maps, consistent with these regions being cooler than their surroundings. Our findings strongly support the hypothesized misaligned-inner-disk origin of the shadows in the J1604-2130 disk. Finally, the inclination of inner disk would be close to -45 $^{circ}$ in contrast with 45 $^{circ}$; it is possible that its internal asymmetric structures cause the variations on the light curve of the host star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا