ترغب بنشر مسار تعليمي؟ اضغط هنا

Detector control system for the CBM-TOF

78   0   0.0 ( 0 )
 نشر من قبل Sheng Dong
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A high-performance time-of-flight (TOF) MRPC wall is being built for the CBM experiment at FAIR for charged hadron identification. The detector control system for the TOF system will be based on EPICS. All components like power supplies for low and high voltages, power distribution boxes, gas control and front-end electronics (FEE) are controlled and monitored. In a test, called mini-CBM, all these functionalities are implemented and tested. For monitoring the detector environment and the status of the front-end electronics, a slow control application is implemented based on IPbus, which is an FPGA-based slow control bus used for the TOF data acquisition system. In addition to the functions of control and monitoring, exception handling and data archiving services are implemented as well. This system has been fully verified in beam tests in 2019 at GSI.



قيم البحث

اقرأ أيضاً

Multi-gap RPC prototypes with readout on a multi-strip electrode were developed for the small polar angle region of the CBM-TOF subdetector, the most demanding zone in terms of granularity and counting rate. The prototypes are based on low resistivit y ($sim$10$^{10}$ $Omega$cm) glass electrodes for performing in high counting rate environment. The strip width/pitch size was chosen such to fulfill the impedance matching with the front-end electronics and the granularity requirements of the innermost zone of the CBM-TOF wall. The in-beam tests using secondary particles produced in heavy ion collisions on a Pb target at SIS18 - GSI Darmstadt and SPS - CERN were focused on the performance of the prototype in conditions similar to the ones expected at SIS100/FAIR. An efficiency larger than 98% and a system time resolution in the order of 70~-~80~ps were obtained in high counting rate and high multiplicity environment.
76 - D Hu , D Sauter , Y Sun 2018
The Compressed Baryonic Matter (CBM) spectrometer aims to study strongly interacting matter under extreme conditions. The key element providing hadron identification at incident energies between 2 and 11 AGeV in heavy-ion collisions at the SIS100 acc elerator is a Time-of-Flight (TOF) wall covering the polar angular range from $2.5^0$ --$25^0$ and full azimuth. CBM is expected to be operational in the year 2024 at the Facility for Anti-proton and Ion Research (FAIR) in Darmstadt, Germany. The existing conceptual design foresees a 120 m^2 TOF-wall composed of Multi-gap Resistive Plate Chambers (MRPC) which is subdivided into a high rate region, a middle rate region and a low rate region. The MRPC3b Multistrip-MRPCs, foreseen to be integrated in the low rate region, have to cope with charged particle fluxes up to 1 kHz/cm2 and therefore will be constructed with thin float glass (0.28 mm thickness) as resistive electrode material. In the scope of the FAIR phase 0 program it is planned to install about 36 % of the MRPC3b counters in the east endcap region of the STAR experiment at BNL as an upgrade for the Beam Energy Scan campaign (BESII) in 2019/2020.
In this contribution we present a new concept of the large acceptance detector systems based on organic scintillators which may allow for simultaneous diagnostic of large fraction of the human body. Novelty of the concept lies in employing large bloc ks of polymer scintillators instead of crystals as detectors of annihilation quanta, and in using predominantly the timing of signals instead of their amplitudes.
The stability of triple GEM detector setups in an environment of high energetic showers is studied. To this end the spark probability in a shower environment is compared to the spark probability in a pion beam.
101 - I. Deppner , N. Herrmann 2018
The Compressed Baryonic Matter spectrometer (CBM) is a future fixed-target heavy-ion experiment located at the Facility for Anti-proton and Ion Research (FAIR) in Darmstadt, Germany. The key element in CBM providing hadron identification at incident beam energies between 2 and 11 AGeV (for Au-nuclei) will be a 120 m$^2$ large Time-of-Flight (ToF) wall composed of Multi-gap Resistive Plate Chambers (MRPC) with a system time resolution better than 80 ps. Aiming for an interaction rate of 10 MHz for Au+Au collisions the MRPCs have to cope with an incident particle flux between 0.1~kHz/cm$^2$ and 100~kHz/cm$^2$ depending on their location. Characterized by granularity and rate capability the actual conceptual design of the ToF-wall foresees 6 different counter granularities and 4 different counter designs. In order to elaborate the final MRPC design of these counters several heavy-ion in-beam and cosmic tests were performed. In this contribution we present the conceptual design of the TOF wall and in particular discuss performance results of full-size MRPC prototypes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا