ﻻ يوجد ملخص باللغة العربية
Purpose: To present a computational procedure for accelerated, calibrationless magnetic resonance image (Cl-MRI) reconstruction that is fast, memory efficient, and scales to high-dimensional imaging. Theory and Methods: Cl-MRI methods can enable high acceleration rates and flexible sampling patterns, but their clinical application is limited by computational complexity and large memory footprint. The proposed computational procedure, HIgh-dimensional fast ConvolU-tional framework (HICU), provides fast, memory-efficient recovery of unsampled k-space points. For demonstration, HICU is applied to six 2D T2-weighted brain, seven 2D cardiac cine, five 3D knee, and one multi-shot diffusion weighted imaging (MSDWI) datasets. Results: The 2D imaging results show that HICU can offer one to two orders of magnitude computation speedup compared to other Cl-MRI methods without sacrificing imaging quality. The 2D cine and 3D imaging results show that the computational acceleration techniques included in HICU yield computing time on par with SENSE-based compressed sensing methods with up to 3 dB improvement in signal-to-error ratio and better perceptual quality. The MSDWI results demonstrate the feasibility of HICU for a challenging multi-shot echo-planar imaging application. Conclusions: The presented method, HICU, offers efficient computation and scalability as well as extendibility to a wide variety of MRI applications.
Magnetic Resonance Imaging (MRI) is a noninvasive imaging technique that provides excellent soft-tissue contrast without using ionizing radiation. MRIs clinical application may be limited by long data acquisition time; therefore, MR image reconstruct
Reconstructing magnetic resonance (MR) images from undersampled data is a challenging problem due to various artifacts introduced by the under-sampling operation. Recent deep learning-based methods for MR image reconstruction usually leverage a gener
Compressed Sensing Magnetic Resonance Imaging (CS-MRI) significantly accelerates MR data acquisition at a sampling rate much lower than the Nyquist criterion. A major challenge for CS-MRI lies in solving the severely ill-posed inverse problem to reco
Deep learning networks are being developed in every stage of the MRI workflow and have provided state-of-the-art results. However, this has come at the cost of increased computation requirement and storage. Hence, replacing the networks with compact
Many real-world signal sources are complex-valued, having real and imaginary components. However, the vast majority of existing deep learning platforms and network architectures do not support the use of complex-valued data. MRI data is inherently co