ﻻ يوجد ملخص باللغة العربية
Convolutional Neural Networks (CNNs) have become common in many fields including computer vision, speech recognition, and natural language processing. Although CNN hardware accelerators are already included as part of many SoC architectures, the task of achieving high accuracy on resource-restricted devices is still considered challenging, mainly due to the vast number of design parameters that need to be balanced to achieve an efficient solution. Quantization techniques, when applied to the network parameters, lead to a reduction of power and area and may also change the ratio between communication and computation. As a result, some algorithmic solutions may suffer from lack of memory bandwidth or computational resources and fail to achieve the expected performance due to hardware constraints. Thus, the system designer and the micro-architect need to understand at early development stages the impact of their high-level decisions (e.g., the architecture of the CNN and the amount of bits used to represent its parameters) on the final product (e.g., the expected power saving, area, and accuracy). Unfortunately, existing tools fall short of supporting such decisions. This paper introduces a hardware-aware complexity metric that aims to assist the system designer of the neural network architectures, through the entire project lifetime (especially at its early stages) by predicting the impact of architectural and micro-architectural decisions on the final product. We demonstrate how the proposed metric can help evaluate different design alternatives of neural network models on resource-restricted devices such as real-time embedded systems, and to avoid making design mistakes at early stages.
Neural architectures and hardware accelerators have been two driving forces for the progress in deep learning. Previous works typically attempt to optimize hardware given a fixed model architecture or model architecture given fixed hardware. And the
Tremendous success of machine learning (ML) and the unabated growth in ML model complexity motivated many ML-specific designs in both CPU and accelerator architectures to speed up the model inference. While these architectures are diverse, highly opt
We propose a novel hardware and software co-exploration framework for efficient neural architecture search (NAS). Different from existing hardware-aware NAS which assumes a fixed hardware design and explores the neural architecture search space only,
Neuromorphic computing systems are embracing memristors to implement high density and low power synaptic storage as crossbar arrays in hardware. These systems are energy efficient in executing Spiking Neural Networks (SNNs). We observe that long bitl
Recent breakthroughs in Neural Architectural Search (NAS) have achieved state-of-the-art performance in many tasks such as image classification and language understanding. However, most existing works only optimize for model accuracy and largely igno