ﻻ يوجد ملخص باللغة العربية
We extend the doubly degenerate Cahn-Hilliard (DDCH) models for isotropic surface diffusion, which yield more accurate approximations than classical degenerate Cahn-Hilliard (DCH) models, to the anisotropic case. We consider both weak and strong anisotropies and demonstrate the capabilities of the approach for these cases numerically. The proposed model provides a variational and energy dissipative approach for anisotropic surface diffusion, enabling large scale simulations with material-specific parameters.
We discuss two doubly degenerate Cahn-Hilliard (DDCH) models for isotropic surface diffusion. Degeneracy is introduced in both the mobility function and a restriction function associated to the chemical potential. Our computational results suggest th
We propose an energy-stable parametric finite element method (ES-PFEM) to discretize the motion of a closed curve under surface diffusion with an anisotropic surface energy $gamma(theta)$ -- anisotropic surface diffusion -- in two dimensions, while $
Despite their importance, chemical reactions confined in a low dimensional space are elusive and experimentally intractable. In this work, we report doubly anisotropic, in-plane and out-of-plane, oxidation reactions of two-dimensional crystals, by re
Almost all materials are anisotropic. In this paper, interface relations of anisotropic elliptic partial differential equations involving discontinuities across interfaces are derived in two and three dimensions. Compared with isotropic cases, the in
In solid-state physics, energies of crystals are usually computed with a plane-wave discretization of Kohn-Sham equations. However the presence of Coulomb singularities requires the use of large plane-wave cut-offs to produce accurate numerical resul