ﻻ يوجد ملخص باللغة العربية
Using a nonlinear mean-field solar dynamo model, we study relationships between the amplitude of the `extended mode of migrating zonal flows (`torsional oscillations) and magnetic cycles, and investigate whether properties the torsional oscillations in subsurface layers and in the deep convection zone can provide information about the future solar cycles. We consider two types of dynamo models: models with regular variations of the alpha-effect, and models with stochastic fluctuations, simulating `long- and short-memory types of magnetic activity variations. It is found that torsional oscillation parameters, such the zonal acceleration, show a considerable correlation with the magnitude of the subsequent cycles with a time lag of 11-20 yr. The sign of the correlation and the time-lag parameters can depend on the depth and latitude of the torsional oscillations as well as on the properties of long-term (`centennial) variations of the dynamo cycles. The strongest correlations are found for the zonal acceleration at high latitudes at the base of the convection zone. The model results demonstrate that helioseismic observations of the torsional oscillations can be useful for advanced prediction of the solar cycles, one-two sunspot cycles ahead.
The phenomenon of solar torsional oscillations (TO) represents migratory zonal flows associated with the solar cycle. These flows are observed on the solar surface and, according to helioseismology, extend through the convection zone. We study the or
We characterize and analyze rotational torsional oscillations developing in a large-eddy magnetohydrodynamical simulation of solar convection (Ghizaru, Charbonneau, and Smolarkiewicz, Astrophys. J. Lett., 715, L133 (2010); Racine et al., Astrophys. J
The solar dynamo and the solar Global internal Magnetic Structure (GMS) appear to be a thin ($sim$2 Mm thick) structure near ($sim$1 Mm below) the solar surface. Evidence for these properties are found from the amplitude of the torsional oscillations
Helioseismology provides important constraints for the solar dynamo problem. However, the basic properties and even the depth of the dynamo process, which operates also in other stars, are unknown. Most of the dynamo models suggest that the toroidal
We present a nonlinear mean-field model of the solar interior dynamics and dynamo, which reproduces the observed cyclic variations of the global magnetic field of the Sun, as well as the differential rotation and meridional circulation. Using this mo