ﻻ يوجد ملخص باللغة العربية
Measurements in Liquid Argon Time Projection Chamber (LArTPC) neutrino detectors, such as the MicroBooNE detector at Fermilab, feature large, high fidelity event images. Deep learning techniques have been extremely successful in classification tasks of photographs, but their application to LArTPC event images is challenging, due to the large size of the events. Events in these detectors are typically two orders of magnitude larger than images found in classical challenges, like recognition of handwritten digits contained in the MNIST database or object recognition in the ImageNet database. Ideally, training would occur on many instances of the entire event data, instead of many instances of cropped regions of interest from the event data. However, such efforts lead to extremely long training cycles, which slow down the exploration of new network architectures and hyperparameter scans to improve the classification performance. We present studies of scaling a LArTPC classification problem on multiple architectures, spanning multiple nodes. The studies are carried out on simulated events in the MicroBooNE detector. We emphasize that it is beyond the scope of this study to optimize networks or extract the physics from any results here. Institutional computing at Pacific Northwest National Laboratory and the SummitDev machine at Oak Ridge National Laboratorys Leadership Computing Facility have been used. To our knowledge, this is the first use of state-of-the-art Convolutional Neural Networks for particle physics and their attendant compute techniques onto the DOE Leadership Class Facilities. We expect benefits to accrue particularly to the Deep Underground Neutrino Experiment (DUNE) LArTPC program, the flagship US High Energy Physics (HEP) program for the coming decades.
Numerical simulations of plasma flows are crucial for advancing our understanding of microscopic processes that drive the global plasma dynamics in fusion devices, space, and astrophysical systems. Identifying and classifying particle trajectories al
We have developed a convolutional neural network (CNN) that can make a pixel-level prediction of objects in image data recorded by a liquid argon time projection chamber (LArTPC) for the first time. We describe the network design, training techniques
Bayesian inference applied to microseismic activity monitoring allows for principled estimation of the coordinates of microseismic events from recorded seismograms, and their associated uncertainties. However, forward modelling of these microseismic
In this paper, our goal is to efficiently solve the Vlasov equation on GPUs. A semi-Lagrangian discontinuous Galerkin scheme is used for the discretization. Such kinetic computations are extremely expensive due to the high-dimensional phase space. Th
In the present paper we consider numerical methods to solve the discrete Schrodinger equation with a time dependent Hamiltonian (motivated by problems encountered in the study of spin systems). We will consider both short-range interactions, which le