ﻻ يوجد ملخص باللغة العربية
With the advantages of Millimeter wave in wireless communication network, the coverage radius and inter-site distance can be further reduced, the ultra dense network (UDN) becomes the mainstream of future networks. The main challenge faced by UDN is the serious inter-site interference, which needs to be carefully addressed by joint user association and resource allocation methods. In this paper, we propose a multi-agent Q-learning based method to jointly optimize the user association and resource allocation in UDN. The deep Q-network is applied to guarantee the convergence of the proposed method. Simulation results reveal the effectiveness of the proposed method and different performances under different simulation parameters are evaluated.
Heterogeneous Ultra-Dense Network (HUDN) is one of the vital networking architectures due to its ability to enable higher connectivity density and ultra-high data rates. Rational user association and power control schedule in HUDN can reduce wireless
Software-defined networking (SDN) is the concept of decoupling the control and data planes to create a flexible and agile network, assisted by a central controller. However, the performance of SDN highly depends on the limitations in the fronthaul wh
Network slicing has been considered as one of the key enablers for 5G to support diversified services and application scenarios. This paper studies the distributed network slicing utilizing both the spectrum resource offered by communication network
Software-defined networking (SDN) provides an agile and programmable way to optimize radio access networks via a control-data plane separation. Nevertheless, reaping the benefits of wireless SDN hinges on making optimal use of the limited wireless fr
In the last few years there has been significant growth in the area of wireless communication. IEEE 802.16/WiMAX is the network which is designed for providing high speed wide area broadband wireless access; WiMAX is an emerging wireless technology f