ترغب بنشر مسار تعليمي؟ اضغط هنا

A refinement of the motivic volume, and specialization of birational types

60   0   0.0 ( 0 )
 نشر من قبل Johannes Nicaise
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct an upgrade of the motivic volume by keeping track of dimensions in the Grothendieck ring of varieties. This produces a uniform refinement of the motivic volume and its birational version introduced by Kontsevich and Tschinkel to prove the specialization of birational types. We also provide several explicit examples of obstructions to stable rationality arising from this technique.



قيم البحث

اقرأ أيضاً

262 - Lie Fu , Yeping Zhang 2020
Bershadsky, Cecotti, Ooguri and Vafa constructed a real valued invariant for Calabi-Yau manifolds, which is now called the BCOV invariant. The BCOV invariant is conjecturally related to the Gromov-Witten theory via mirror symmetry. Based upon previou s work of the second author, we prove the conjecture that birational Calabi-Yau manifolds have the same BCOV invariant. We also extend the construction of the BCOV invariant to Calabi-Yau varieties with Kawamata log terminal singularities, and prove its birational invariance for Calabi-Yau varieties with canonical singularities. We provide an interpretation of our construction using the theory of motivic integration.
112 - Fumiaki Suzuki 2015
We prove birational superrigidity of every hypersurface of degree N in P^N with singular locus of dimension s, under the assumption that N is at least 2s+8 and it has only quadratic singularities of rank at least N-s. Combined with the results of I. A. Cheltsov and T. de Fernex, this completes the list of birationally superrigid singular hypersurfaces with only ordinary double points except in dimension 4 and 6. Further we impose an additional condition on the base locus of a birational map to a Mori fiber space. Then we prove conditional birational superrigidity of certain smooth Fano hypersurfaces of index larger or equal to 2, and birational superrigidity of smooth Fano complete intersections of index 1 in weak form.
Enhanced ind-sheaves provide a suitable framework for the irregular Riemann-Hilbert correspondence. In this paper, we show how Satos specialization and microlocalization functors have a natural enhancement, and discuss some of their properties.
175 - Bruno Kahn , R. Sujatha 2014
This version corrects a wrong proof of Proposition 6.3.2 and simplifies the exposition in Section 6.
120 - Fumiaki Suzuki 2015
We prove that every smooth complete intersection X defined by s hypersurfaces of degree d_1, ... , d_s in a projective space of dimension d_1 + ... + d_s is birationally superrigid if 5s +1 is at most 2(d_1 + ... + d_s + 1)/sqrt{d_1...d_s}. In partic ular, X is non-rational and Bir(X)=Aut(X). We also prove birational superrigidity of singular complete intersections with similar numerical condition. These extend the results proved by Tommaso de Fernex.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا