ﻻ يوجد ملخص باللغة العربية
We provide statistical learning guarantees for two unsupervised learning tasks in the context of compressive statistical learning, a general framework for resource-efficient large-scale learning that we introduced in a companion paper.The principle of compressive statistical learning is to compress a training collection, in one pass, into a low-dimensional sketch (a vector of random empirical generalized moments) that captures the information relevant to the considered learning task. We explicitly describe and analyze random feature functions which empirical averages preserve the needed information for compressive clustering and compressive Gaussian mixture modeling with fixed known variance, and establish sufficient sketch sizes given the problem dimensions.
In the compressive phase retrieval problem, or phaseless compressed sensing, or compressed sensing from intensity only measurements, the goal is to reconstruct a sparse or approximately $k$-sparse vector $x in mathbb{R}^n$ given access to $y= |Phi x|
Local graph clustering methods aim to find small clusters in very large graphs. These methods take as input a graph and a seed node, and they return as output a good cluster in a running time that depends on the size of the output cluster but that is
Compressive sensing (CS) has been widely studied and applied in many fields. Recently, the way to perform secure compressive sensing (SCS) has become a topic of growing interest. The existing works on SCS usually take the sensing matrix as a key and
Compressive Learning is an emerging topic that combines signal acquisition via compressive sensing and machine learning to perform inference tasks directly on a small number of measurements. Many data modalities naturally have a multi-dimensional or
In coded aperture snapshot spectral imaging (CASSI) system, the real-world hyperspectral image (HSI) can be reconstructed from the captured compressive image in a snapshot. Model-based HSI reconstruction methods employed hand-crafted priors to solve