ﻻ يوجد ملخص باللغة العربية
We show that a simple experimental setting of a locally pumped and lossy array of two-level quantum systems can stabilize states with strong long-range coherence. Indeed, by explicit analytic construction, we show there is an extensive set of steady-state density operators, from minimally to maximally entangled, despite this being an interacting open many-body problem. Such nonequilibrium steady states arise from a hidden symmetry that stabilizes Bell pairs over arbitrarily long distances, with unique experimental signatures. We demonstrate a protocol by which one can selectively prepare these states using dissipation. Our findings are accessible in present-day experiments.
We find a rich variety of counterintuitive features in the steady states of a qubit array coupled to a dissipative source and sink at two arbitrary sites, using a master equation approach. We show there are setups where increasing the pump and loss r
We observe the coherence of an interacting two-component Bose-Einstein condensate (BEC) surviving for seconds in a trapped Ramsey interferometer. Mean-field driven collective oscillations of two components lead to periodic dephasing and rephasing of
Slow variations (quenches) of the magnetic field across the paramagnetic-ferromagnetic phase transition of spin systems produce heat. In systems with short-range interactions the heat exhibits universal power-law scaling as a function of the quench r
The existence of quasi-long range order is demonstrated in nonequilibrium steady states in isotropic $XY$ spin chains including of two types of additional terms that each generate a gap in the energy spectrum. The system is driven out of equilibrium
Ultracold bosonic atoms in optical lattices self-organize into a variety of structural and quantum phases when placed into a single-mode cavity and pumped by a laser. Cavity optomechanical effects induce an atom density modulation at the cavity-mode