ﻻ يوجد ملخص باللغة العربية
We have carried out an intensive study of photometric (Kepler Mission) and spectroscopic data on the system Kepler-2 (HAT-P-7A) using the dedicated software WinFitter. The mean individual data-point error of the normalized flux values for this system is 0.00015, leading to the models specification for the mean reference flux to an accuracy of $sim$0.5 ppm. This testifies to the remarkably high accuracy of the binned data-set, derived from over 1.8 million individual observations. Spectroscopic data are reported with the similarly high-accuracy radial velocity amplitude measure of $sim$2 m s$^{-1}$. The analysis includes discussion of the fitting quality and model adequacy. Our derived absolute parameters for Kepler-2 are as follows: $M_p$ (Jupiter) 1.80 $pm$ 0.13; $R_{star}$ 1.46 $pm 0.08 times 10^6$ km; $R_p$ 1.15 $pm 0.07 times 10^5$ km. These values imply somewhat larger and less condensed bodies than previously catalogued, but within reasonable error estimates of such literature parameters. We find also tidal, reflection and Doppler effect parameters, showing that the optimal model specification differs slightly from a `cleaned model that reduces the standard deviation of the $sim$3600 binned light curve points to less than 0.9 ppm. We consider these slight differences, making comparisons with the hot-jupiter systems Kepler-1 (TrES-2) and 13.
The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star-type, and insolation flux. The mi
Most Sun-like stars in the Galaxy reside in gravitationally-bound pairs of stars called binary stars. While long anticipated, the existence of a circumbinary planet orbiting such a pair of normal stars was not definitively established until the disco
Measures of exoplanet bulk densities indicate that small exoplanets with radius less than 3 Earth radii ($R_oplus$) range from low-density sub-Neptunes containing volatile elements to higher density rocky planets with Earth-like or iron-rich (Mercury
Three transiting exoplanet candidate stars were discovered in a ground-based photometric survey prior to the launch of NASAs {it Kepler} mission. {it Kepler} observations of them were obtained during Quarter 1 of the {it Kepler} mission. All three st
Exoplanet catalogs produced by surveys suffer from a lack of completeness (not every planet is detected) and less than perfect reliability (not every planet in the catalog is a true planet), particularly near the surveys detection limit. Exoplanet oc