ترغب بنشر مسار تعليمي؟ اضغط هنا

Feature Selection and Intrusion Detection in Cloud Environment based on Machine Learning Algorithms

206   0   0.0 ( 0 )
 نشر من قبل Amir Javadpour
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Characteristics and way of behavior of attacks and infiltrators on computer networks are usually very difficult and need an expert In addition; the advancement of computer networks, the number of attacks and infiltrations are also increasing. In fact, the knowledge coming from an expert will lose its value over time and must be updated and made available to the system and this makes the need for the expert person always felt. In machine learning techniques, knowledge is extracted from the data itself which has diminished the role of the expert. Various methods used to detect intrusions, such as statistical models, safe system approach, neural networks, etc., all weaken the fact that it uses all the features of an information packet rotating in the network for intrusion detection. Also, the huge volume of information and the unthinkable state space is also an important issue in the detection of intrusion. Therefore, the need for automatic identification of new and suspicious patterns in an attempt for intrusion with the use of more efficient methods Lower cost and higher performance is needed more than before. The purpose of this study is to provide a new method based on intrusion detection systems and its various architectures aimed at increasing the accuracy of intrusion detection in cloud computing. Keywords : intrusion detection, feature Selection, classification Algorithm, machine learning, neural network.



قيم البحث

اقرأ أيضاً

Recent advances in deep learning renewed the research interests in machine learning for Network Intrusion Detection Systems (NIDS). Specifically, attention has been given to sequential learning models, due to their ability to extract the temporal cha racteristics of Network traffic Flows (NetFlows), and use them for NIDS tasks. However, the applications of these sequential models often consist of transferring and adapting methodologies directly from other fields, without an in-depth investigation on how to leverage the specific circumstances of cybersecurity scenarios; moreover, there is a lack of comprehensive studies on sequential models that rely on NetFlow data, which presents significant advantages over traditional full packet captures. We tackle this problem in this paper. We propose a detailed methodology to extract temporal sequences of NetFlows that denote patterns of malicious activities. Then, we apply this methodology to compare the efficacy of sequential learning models against traditional static learning models. In particular, we perform a fair comparison of a `sequential Long Short-Term Memory (LSTM) against a `static Feedforward Neural Networks (FNN) in distinct environments represented by two well-known datasets for NIDS: the CICIDS2017 and the CTU13. Our results highlight that LSTM achieves comparable performance to FNN in the CICIDS2017 with over 99.5% F1-score; while obtaining superior performance in the CTU13, with 95.7% F1-score against 91.5%. This paper thus paves the way to future applications of sequential learning models for NIDS.
The application of machine learning (ML) algorithms are massively scaling-up due to rapid digitization and emergence of new tecnologies like Internet of Things (IoT). In todays digital era, we can find ML algorithms being applied in the areas of heal thcare, IoT, engineering, finance and so on. However, all these algorithms need to be trained in order to predict/solve a particular problem. There is high possibility of tampering the training datasets and produce biased results. Hence, in this article, we have proposed blockchain based solution to secure the datasets generated from IoT devices for E-Health applications. The proposed blockchain based solution uses using private cloud to tackle the aforementioned issue. For evaluation, we have developed a system that can be used by dataset owners to secure their data.
Network intrusion is a well-studied area of cyber security. Current machine learning-based network intrusion detection systems (NIDSs) monitor network data and the patterns within those data but at the cost of presenting significant issues in terms o f privacy violations which may threaten end-user privacy. Therefore, to mitigate risk and preserve a balance between security and privacy, it is imperative to protect user privacy with respect to intrusion data. Moreover, cost is a driver of a machine learning-based NIDS because such systems are increasingly being deployed on resource-limited edge devices. To solve these issues, in this paper we propose a NIDS called PCC-LSM-NIDS that is composed of a Pearson Correlation Coefficient (PCC) based feature selection algorithm and a Least Square Method (LSM) based privacy-preserving algorithm to achieve low-cost intrusion detection while providing privacy preservation for sensitive data. The proposed PCC-LSM-NIDS is tested on the benchmark intrusion database UNSW-NB15, using five popular classifiers. The experimental results show that the proposed PCC-LSM-NIDS offers advantages in terms of less computational time, while offering an appropriate degree of privacy protection.
Many current approaches to the design of intrusion detection systems apply feature selection in a static, non-adaptive fashion. These methods often neglect the dynamic nature of network data which requires to use adaptive feature selection techniques . In this paper, we present a simple technique based on incremental learning of support vector machines in order to rank the features in real time within a streaming model for network data. Some illustrative numerical experiments with two popular benchmark datasets show that our approach allows to adapt to the changes in normal network behaviour and novel attack patterns which have not been experienced before.
Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years because of the rapid proliferation of wireless devices. MANETs are highly vulnerable to attacks due to the open medium, dynamically changing network topo logy and lack of centralized monitoring point. It is important to search new architecture and mechanisms to protect the wireless networks and mobile computing application. IDS analyze the network activities by means of audit data and use patterns of well-known attacks or normal profile to detect potential attacks. There are two methods to analyze: misuse detection and anomaly detection. Misuse detection is not effective against unknown attacks and therefore, anomaly detection method is used. In this approach, the audit data is collected from each mobile node after simulating the attack and compared with the normal behavior of the system. If there is any deviation from normal behavior then the event is considered as an attack. Some of the features of collected audit data may be redundant or contribute little to the detection process. So it is essential to select the important features to increase the detection rate. This paper focuses on implementing two feature selection methods namely, markov blanket discovery and genetic algorithm. In genetic algorithm, bayesian network is constructed over the collected features and fitness function is calculated. Based on the fitness value the features are selected. Markov blanket discovery also uses bayesian network and the features are selected depending on the minimum description length. During the evaluation phase, the performances of both approaches are compared based on detection rate and false alarm rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا