ترغب بنشر مسار تعليمي؟ اضغط هنا

Accretion Disc Winds in Tidal Disruption Events: Ultraviolet Spectral Lines as Orientation Indicators

291   0   0.0 ( 0 )
 نشر من قبل Edward John Parkinson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Some tidal disruption events (TDEs) exhibit blueshifted broad absorption lines (BALs) in their rest-frame ultraviolet (UV) spectra, while others display broad emission lines (BELs). Similar phenomenology is observed in quasars and accreting white dwarfs, where it can be interpreted as an orientation effect associated with line formation in an accretion disc wind.We propose and explore a similar unification scheme for TDEs. We present synthetic UV spectra for disc and wind-hosting TDEs, produced by a state-of-the-art Monte Carlo ionization and radiative transfer code. Our models cover a wide range of disc wind geometries and kinematics. Such winds naturally reproduce both BALs and BELs. In general, sight lines looking into the wind cone preferentially produce BALs, while other orientations preferentially produce BELs. We also study the effect of wind clumping and CNO-processed abundances on the observed spectra. Clumpy winds tend to produce stronger UV emission and absorption lines, because clumping increases both the emission measure and the abundances of the relevant ionic species, the latter by reducing the ionization state of the outflow. The main effect of adopting CNO-processed abundances is a weakening of C~{sc iv}~1550~AA~ and an enhancement of N textsc{v}~1240~AA~ in the spectra. We conclude that line formation in an accretion disc wind is a promising mechanism for explaining the diverse UV spectra of TDEs. If this is correct, the relative number of BAL and BEL TDEs can be used to estimate the covering factor of the outflow. The models in this work are publicly available online and upon request.



قيم البحث

اقرأ أيضاً

We construct a time-dependent relativistic accretion model for tidal disruption events (TDEs) with an $alpha-$viscosity and the pressure dominated by gas pressure. We also include the mass fallback rate $dot{M}_f$ for both full and partial disruption TDEs, and assume that the infalling debris forms a seed disc in time $t_c$, which evolves due to the mass addition from the infalling debris and the mass loss via accretion onto the black hole. Besides, we derive an explicit form for the disc height that depends on the angular momentum parameter in the disc. We show that the surface density of the disc increases at an initial time due to mass addition, and then decreases as the mass fallback rate decreases, which results in a decrease in the disc mass $M_{rm d}$ with a late-time evolution of $M_{rm d} propto t^{-1.05}$ and $M_{rm d} propto t^{-1.38}$ for full and partial disruption TDEs respectively, where $t$ is the time parameter. The bolometric luminosity $L$ shows a rise and decline that follows a power-law at late times given by $L propto t^{-1.8}$ and $L propto t^{-2.3}$ for full and partial disruption TDEs respectively. Our obtained luminosity declines faster than the luminosity inferred using $L propto dot{M}_f$. We also compute the light curves in various spectral bands.
The existence of optical-ultraviolet Tidal Disruption Events (TDEs) could be considered surprising because their electromagnetic output was originally predicted to be dominated by X-ray emission from an accretion disk. Yet over the last decade, the g rowth of optical transient surveys has led to the identification of a new class of optical transients occurring exclusively in galaxy centers, many of which are considered to be TDEs. Here we review the observed properties of these events, identified based on a shared set of both photometric and spectroscopic properties. We present a homogeneous analysis of 33 sources that we classify as robust TDEs, and which we divide into classes. The criteria used here to classify TDEs will possibly get updated as new samples are collected and potential additional diversity of TDEs is revealed. We also summarize current measurements of the optical-ultraviolet TDE rate, as well as the mass function and luminosity function. Many open questions exist regarding the current sample of events. We anticipate that the search for answers will unlock new insights in a variety of fields, from accretion physics to galaxy evolution.
Accretion onto black holes is an efficient mechanism in converting the gas mass-energy into energetic outputs as radiation, wind and jet. Tidal disruption events, in which stars are tidally torn apart and then accreted onto supermassive black holes, offer unique opportunities of studying the accretion physics as well as the wind and jet launching physics across different accretion regimes. In this review, we systematically describe and discuss the models that have been developed to study the accretion flows and jets in tidal disruption events. A good knowledge of these physics is not only needed for understanding the emissions of the observed events, but also crucial for probing the general relativistic space-time around black holes and the demographics of supermassive black holes via tidal disruption events.
We present the results of a large multi-wavelength follow-up campaign of the Tidal Disruption Event (TDE) dsg, focusing on low to high resolution optical spectroscopy, X-ray, and radio observations. The galaxy hosts a super massive black hole of mass $rm (5.4pm3.2)times10^6,M_odot$ and careful analysis finds no evidence for the presence of an Active Galactic Nucleus, instead the TDE host galaxy shows narrow optical emission lines that likely arise from star formation activity. The transient is luminous in the X-rays, radio, UV and optical. The X-ray emission becomes undetected after $sim$125 days, and the radio luminosity density starts to decay at frequencies above 5.4 GHz by $sim$180 days. Optical emission line signatures of the TDE are present up to $sim$250 days after the discovery of the transient. The medium to high resolution spectra show traces of absorption lines that we propose originate in the self-gravitating debris streams. At late times, after $sim$200 days, narrow Fe lines appear in the spectra. The TDE was previously classified as N-strong, but after careful subtraction of the host galaxys stellar contribution, we find no evidence for these N lines in the TDE spectrum, even though O Bowen lines are detected. The observed properties of the X-ray emission are fully consistent with the detection of the inner regions of a cooling accretion disc. The optical and radio properties are consistent with this central engine seen at a low inclination (i.e., seen from the poles).
95 - Suvi Gezari 2021
The concept of stars being tidally ripped apart and consumed by a massive black hole (MBH) lurking in the center of a galaxy first captivated theorists in the late 1970s. The observational evidence for these rare but illuminating phenomena for probin g otherwise dormant MBHs, first emerged in archival searches of the soft X-ray ROSAT All-Sky Survey in the 1990s; but has recently accelerated with the increasing survey power in the optical time domain, with tidal disruption events (TDEs) now regarded as a class of optical nuclear transients with distinct spectroscopic features. Multiwavelength observations of TDEs have revealed panchromatic emission, probing a wide range of scales, from the innermost regions of the accretion flow, to the surrounding circumnuclear medium. I review the current census of 56 TDEs reported in the literature, and their observed properties can be summarized as follows: $bullet$ The optical light curves follow a power-law decline from peak that scales with the inferred central black hole mass as expected for the fallback rate of the stellar debris, but the rise time does not. $bullet$ The UV/optical and soft X-ray thermal emission come from different spatial scales, and their intensity ratio has a large dynamic range, and is highly variable, providing important clues as to what is powering the two components. $bullet$ They can be grouped into three spectral classes, and those with Bowen fluorescence line emission show a preference for a hotter and more compact line-emitting region, while those with only He II emission lines are the rarest class.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا