ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical simulations of shear-induced consecutive coronal mass ejections

71   0   0.0 ( 0 )
 نشر من قبل Dana-Camelia Talpeanu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D.-C. Talpeanu




اسأل ChatGPT حول البحث

Methods: Stealth CMEs represent a particular class of solar eruptions that are clearly distinguished in coronagraph observations, but they dont have a clear source signature. A particular type of stealth CMEs occurs in the trailing current sheet of a previous ejection, therefore, we used the 2.5D MHD package of the code MPI-AMRVAC to numerically simulate consecutive CMEs by imposing shearing motions onto the inner boundary. The initial magnetic configuration consists of a triple arcade structure embedded into a bimodal solar wind, and the sheared polarity inversion line is found in the southern loop system. The mesh was continuously adapted through a refinement method that applies to current carrying structures. We then compared the obtained eruptions with the observed directions of propagation of an initial multiple coronal mass ejection (MCME) event that occurred in September 2009. We further analysed the simulated ejections by tracking the centre of their flux ropes in latitude and their total speed. Radial Poynting flux computation was employed as well to follow the evolution of electromagnetic energy introduced into the system. Results: Changes within 1% in the shearing speed result in three different scenarios for the second CME, although the preceding eruption seems insusceptible to such small variations. Depending on the applied shearing speed, we thus obtain a failed eruption, a stealth, or a CME driven by the imposed shear, as the second ejection. The dynamics of all eruptions are compared with the observed directions of propagation of an MCME event and a good correlation is achieved. The Poynting flux analysis reveals the temporal variation of the important steps of eruptions. For the first time, a stealth CME is simulated in the aftermath of a first eruption, through changes in the applied shearing speed.



قيم البحث

اقرأ أيضاً

With the global view and high-cadence observations from SDO/AIA and STEREO, many spatially separated solar eruptive events appear to be coupled. However, the mechanisms for sympathetic events are still largely unknown. In this study, we investigate t he impact of an erupting flux rope on surrounding solar structures through large-scale magnetic coupling. We build a realistic environment of the solar corona on 2011 February 15 using a global magnetohydrodynamics (MHD) model and initiate coronal mass ejections (CMEs) in active region (AR) 11158 by inserting Gibson-Low analytical flux ropes. We show that a CMEs impact on the surrounding structures depends not only on the magnetic strength of these structures and their distance to the source region, but also on the interaction between the CME with the large-scale magnetic field. Within the CME expansion domain where the flux rope field directly interacts with the solar structures, expansion-induced reconnection often modifies the overlying field, thereby increasing the decay index. This effect may provide a primary coupling mechanism underlying the sympathetic eruptions. The magnitude of the impact is found to depend on the orientation of the erupting flux rope, with the largest impacts occurring when the flux rope is favorably oriented for reconnecting with the surrounding regions. Outside the CME expansion domain, the influence of the CME is mainly through field line compression or post-eruption relaxation. Based on our numerical experiments, we discuss a way to quantify the eruption impact, which could be useful for forecasting purposes.
89 - Heidi Korhonen 2016
Coronal mass ejections (CMEs) are explosive events that occur basically daily on the Sun. It is thought that these events play a crucial role in the angular momentum and mass loss of late-type stars, and also shape the environment in which planets fo rm and live. Stellar CMEs can be detected in optical spectra in the Balmer lines, especially in Halpha, as blue-shifted extra emission/absorption. To increase the detection probability one can monitor young open clusters, in which the stars are due to their youth still rapid rotators, and thus magnetically active and likely to exhibit a large number of CMEs. Using ESO facilities and the Nordic Optical Telescope we have obtained time series of multi-object spectroscopic observations of late-type stars in six open clusters with ages ranging from 15 Myrs to 300 Myrs. Additionally, we have studied archival data of numerous active stars. These observations will allow us to obtain information on the occurrence rate of CMEs in late-type stars with different ages and spectral types. Here we report on the preliminary outcome of our studies.
The Coronal Multichannel Polarimeter (CoMP) measures not only the polarization of coronal emission, but also the full radiance profiles of coronal emission lines. For the first time, CoMP observations provide high-cadence image sequences of the coron al line intensity, Doppler shift and line width simultaneously in a large field of view. By studying the Doppler shift and line width we may explore more of the physical processes of CME initiation and propagation. Here we identify a list of CMEs observed by CoMP and present the first results of these observations. Our preliminary analysis shows that CMEs are usually associated with greatly increased Doppler shift and enhanced line width. These new observations provide not only valuable information to constrain CME models and probe various processes during the initial propagation of CMEs in the low corona, but also offer a possible cost-effective and low-risk means of space weather monitoring.
222 - Y. Chen , H. Q. Song , B. Li 2010
Between July 5th and July 7th 2004, two intriguing fast coronal mass ejection(CME)-streamer interaction events were recorded by the Large Angle and Spectrometric Coronagraph (LASCO). At the beginning of the events, the streamer was pushed aside from their equilibrium position upon the impact of the rapidly outgoing and expanding ejecta; then, the streamer structure, mainly the bright streamer belt, exhibited elegant large scale sinusoidal wavelike motions. The motions were apparently driven by the restoring magnetic forces resulting from the CME impingement, suggestive of magnetohydrodynamic kink mode propagating outwards along the plasma sheet of the streamer. The mode is supported collectively by the streamer-plasma sheet structure and is therefore named streamer wave in the present study. With the white light coronagraph data, we show that the streamer wave has a period of about 1 hour, a wavelength varying from 2 to 4 solar radii, an amplitude of about a few tens of solar radii, and a propagating phase speed in the range 300 to 500 km s$^{-1}$. We also find that there is a tendancy for the phase speed to decline with increasing heliocentric distance. These observations provide good examples of large scale wave phenomena carried by coronal structures, and have significance in developing seismological techniques for diagnosing plasma and magnetic parameters in the outer corona.
Stealth coronal mass ejections (CMEs) are eruptions from the Sun that have no obvious low coronal signature. These CMEs are characteristically slower events, but can still be geoeffective and affect space weather at Earth. Therefore, understanding th e science underpinning these eruptions will greatly improve our ability to detect and, eventually, forecast them. We present a study of two stealth CMEs analysed using advanced image processing techniques that reveal their faint signatures in observations from the extreme ultraviolet (EUV) imagers onboard the Solar and Heliospheric Observatory (SOHO), Solar Dynamics Observatory (SDO), and Solar Terrestrial Relations Observatory (STEREO) spacecraft. The different viewpoints given by these spacecraft provide the opportunity to study each eruption from above and the side contemporaneously. For each event, EUV and magnetogram observations were combined to reveal the coronal structure that erupted. For one event, the observations indicate the presence of a magnetic flux rope before the CMEs fast rise phase. We found that both events originated in active regions and are likely to be sympathetic CMEs triggered by a nearby eruption. We discuss the physical processes that occurred in the time leading up to the onset of each stealth CME and conclude that these eruptions are part of the low-energy and velocity tail of a distribution of CME events, and are not a distinct phenomenon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا