ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantifying the Effects of Contact Tracing, Testing, and Containment Measures in the Presence of Infection Hotspots

121   0   0.0 ( 0 )
 نشر من قبل Lars Lorch
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiple lines of evidence strongly suggest that infection hotspots, where a single individual infects many others, play a key role in the transmission dynamics of COVID-19. However, most of the existing epidemiological models fail to capture this aspect by neither representing the sites visited by individuals explicitly nor characterizing disease transmission as a function of individual mobility patterns. In this work, we introduce a temporal point process modeling framework that specifically represents visits to the sites where individuals get in contact and infect each other. Under our model, the number of infections caused by an infectious individual naturally emerges to be overdispersed. Using an efficient sampling algorithm, we demonstrate how to apply Bayesian optimization with longitudinal case data to estimate the transmission rate of infectious individuals at the sites they visit and in their households. Simulations using fine-grained and publicly available demographic data and site locations from Bern, Switzerland showcase the flexibility of our framework. To facilitate research and analyses of other cities and regions, we release an open-source implementation of our framework.



قيم البحث

اقرأ أيضاً

Amidst the current COVID-19 pandemic, quantifying the effects of strategies that mitigate the spread of infectious diseases is critical. This article presents a compartmental model that addresses the role of random viral testing, follow-up contact tr acing, and subsequent isolation of infectious individuals to stabilize the spread of a disease. We propose a branching model and an individual (or agent) based model, both of which capture the stochastic, heterogeneous nature of interactions within a community. The branching model is used to derive new analytical results for the trade-offs between the different mitigation strategies, with the surprising result that a communitys resilience to disease outbreaks is independent of its underlying network structure.
Discovering and isolating infected individuals is a cornerstone of epidemic control. Because many infectious diseases spread through close contacts, contact tracing is a key tool for case discovery and control. However, although contact tracing has b een performed widely, the mathematical understanding of contact tracing has not been fully established and it has not been clearly understood what determines the efficacy of contact tracing. Here, we reveal that, compared with forward tracing---tracing to whom disease spreads, backward tracing---tracing from whom disease spreads---is profoundly more effective. The effectiveness of backward tracing is due to simple but overlooked biases arising from the heterogeneity in contacts. Using simulations on both synthetic and high-resolution empirical contact datasets, we show that even at a small probability of detecting infected individuals, strategically executed contact tracing can prevent a significant fraction of further transmissions. We also show that---in terms of the number of prevented transmissions per isolation---case isolation combined with a small amount of contact tracing is more efficient than case isolation alone. By demonstrating that backward contact tracing is highly effective at discovering super-spreading events, we argue that the potential effectiveness of contact tracing has been underestimated. Therefore, there is a critical need for revisiting current contact tracing strategies so that they leverage all forms of biases. Our results also have important consequences for digital contact tracing because it will be crucial to incorporate the capability for backward and deep tracing while adhering to the privacy-preserving requirements of these new platforms.
Digital contact tracing is a public health intervention. It should be integrated with local health policy, provide rapid and accurate notifications to exposed individuals, and encourage high app uptake and adherence to quarantine. Real-time monitorin g and evaluation of effectiveness of app-based contact tracing is key for improvement and public trust.
200 - Ji Liu , Xiakai Wang , Haoyi Xiong 2020
As the recent COVID-19 outbreak rapidly expands all over the world, various containment measures have been carried out to fight against the COVID-19 pandemic. In Mainland China, the containment measures consist of three types, i.e., Wuhan travel ban, intra-city quarantine and isolation, and inter-city travel restriction. In order to carry out the measures, local economy and information acquisition play an important role. In this paper, we investigate the correlation of local economy and the information acquisition on the execution of containment measures to fight against the COVID-19 pandemic in Mainland China. First, we use a parsimonious model, i.e., SIR-X model, to estimate the parameters, which represent the execution of intra-city quarantine and isolation in major cities of Mainland China. In order to understand the execution of intra-city quarantine and isolation, we analyze the correlation between the representative parameters including local economy, mobility, and information acquisition. To this end, we collect the data of Gross Domestic Product (GDP), the inflows from Wuhan and outflows, and the COVID-19 related search frequency from a widely-used Web mapping service, i.e., Baidu Maps, and Web search engine, i.e., Baidu Search Engine, in Mainland China. Based on the analysis, we confirm the strong correlation between the local economy and the execution of information acquisition in major cities of Mainland China. We further evidence that, although the cities with high GDP per capita attracts bigger inflows from Wuhan, people are more likely to conduct the quarantine measure and to reduce going out to other cities. Finally, the correlation analysis using search data shows that well-informed individuals are likely to carry out containment measures.
Identifying the infection sources in a network, including the index cases that introduce a contagious disease into a population network, the servers that inject a computer virus into a computer network, or the individuals who started a rumor in a soc ial network, plays a critical role in limiting the damage caused by the infection through timely quarantine of the sources. We consider the problem of estimating the infection sources and the infection regions (subsets of nodes infected by each source) in a network, based only on knowledge of which nodes are infected and their connections, and when the number of sources is unknown a priori. We derive estimators for the infection sources and their infection regions based on approximations of the infection sequences count. We prove that if there are at most two infection sources in a geometric tree, our estimator identifies the true source or sources with probability going to one as the number of infected nodes increases. When there are more than two infection sources, and when the maximum possible number of infection sources is known, we propose an algorithm with quadratic complexity to estimate the actual number and identities of the infection sources. Simulations on various kinds of networks, including tree networks, small-world networks and real world power grid networks, and tests on two real data sets are provided to verify the performance of our estimators.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا