ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially Resolved Chandra Spectroscopy of the Large Magellanic Cloud Supernova Remnant N132D

116   0   0.0 ( 0 )
 نشر من قبل Piyush Sharda Mr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform detailed spectroscopy of the X-ray brightest supernova remnant (SNR) in the Large Magellanic Cloud (LMC), N132D, using Chandra archival observations. By analyzing the spectra of the entire well-defined rim, we determine the mean abundances for O, Ne, Mg, Si, S and Fe for the local LMC environment. We find evidence of enhanced O on the north-western and S on the north-eastern blast wave. By analyzing spectra interior to the remnant, we confirm the presence of a Si-rich relatively hot plasma (> 1.5 kev) that is also responsible for the Fe K emission. Chandra images show that the Fe K emission is distributed throughout the interior of the southern half of the remnant but does not extend out to the blast wave. We estimate the progenitor mass to be $15pm5,M_{odot}$ using abundance ratios in different regions that collectively cover a large fraction of the remnant, as well as from the radius of the forward shock compared with models of an explosion in a cavity created by stellar winds. We fit ionizing and recombining plasma models to the Fe K emission and find that the current data cannot distinguish between the two, hence the origin of the high-temperature plasma remains uncertain. Our analysis is consistent with N132D being the result of a core-collapse supernova in a cavity created by its intermediate mass progenitor.



قيم البحث

اقرأ أيضاً

196 - Kentaro Someya 2013
This paper presents a detailed analysis of supernova remnant (SNR) N103B located in the Large Magellanic Cloud (LMC), based on Suzaku and Chandra observations. The spectrum of the entire SNR was reproduced using 3 ISM components with the kT of 0.32, 0.56, and 0.92keV and one ejecta component of 3.96keV, based on spectral analysis of the Suzaku/XIS data. The ejecta was overabundant in heavy elements, such as Mg, Si, S, Ca, Fe, and Ni. The unprecedentedly high quality of data obtained by XIS, allowed us to correctly distinguish between the emissions from the ISM and the ejecta for the first time. Combining XIS spectral analysis with Chandra/ACIS image analysis, we verified that the ejecta distributions for elements from Si to Fe-K were similar to one another, although Fe-K emission was located slightly inward compared with that of lighter elements such as Si, S, Ar, and Ca. The onion-like structure of the ejecta was maintained after the SN. In addition, the ISM emission represented by O and Fe-L was located inside the ejecta emission. We compared hydrogen-rich ejecta plasma, which is indicative of Type II SNRs, with plasma rich in heavy elements and poor in hydrogen, which is mainly observed in Type Ia. In the case of N103B, we could not determine whether the origin of the continuum emission in the 4.0-6.0keV band was from ejecta or high-temperature ISM only based on the spectral modeling of XIS data. High-energy continuum images in the 5.2-6.0keV band obtained by ACIS were extremely similar to those of ejecta, implying that the origin of the high-energy continuum might indeed be the ejecta. By combining spectral analysis with high-energy continuum images, we found some indications for H-dominated plasma, and as a result, that the progenitor of N103B might have been a Type II. The progenitor mass was estimated to be 13 Msun based on the abundance patterns of Mg, Fe, and Ni relative to Si.
185 - John P. Hughes 2006
A new Chandra observation of SNR 0506-68.0 (also called N23) reveals a complex, highly structured morphology in the low energy X-ray band and an isolated compact central object in the high energy band. Spectral analysis indicates that the X-ray emiss ion overall is dominated by thermal gas whose composition is consistent with swept-up ambient material. There is a strong gradient in ambient density across the diameter of the remnant. Toward the southeast, near a prominent star cluster, the emitting density is 10 - 23 cm^{-3} while toward the northwest it has dropped to a value of only 1 cm^{-3}. The total extent of the X-ray remnant is 100 by 120 (24 pc x 29 pc for a distance of 50 kpc), somewhat larger than previously known. The remnants age is estimated to be ~4600 yr. One part of the remnant shows evidence for enhanced O, Ne, and perhaps Mg abundances, which is interpreted as evidence for ejecta from a massive star core collapse supernova. The compact central object has a luminosity of a few times 10^{33} ergs/s and no obvious radio or optical counterpart. It does not show an extended nebula or pulsed emission as expected from a young energetic pulsar, but resembles the compact central objects seen in other core collapse SNe, such as Cas A.
We present a new optical sample of three Supernova Remnants and 16 Supernova Remnant (SNR) candidates in the Large Magellanic Cloud(LMC). These objects were originally selected using deep H$alpha$, [SII] and [OIII] narrow-band imaging. Most of the ne wly found objects are located in less dense regions, near or around the edges of the LMCs main body. Together with previously suggested MCSNR J0541-6659, we confirm the SNR nature for two additional new objects: MCSNR J0522-6740 and MCSNRJ0542-7104. Spectroscopic follow-up observations for 12 of the LMC objects confirm high [SII]/H$alpha$ a emission-line ratios ranging from 0.5 to 1.1. We consider the candidate J0509-6402 to be a special example of the remnant of a possible Type Ia Supernova which is situated some 2$^circ$ ($sim 1.75$kpc) north from the main body of the LMC. We also find that the SNR candidates in our sample are significantly larger in size than the currently known LMC SNRs by a factor of $sim 2$. This could potentially imply that we are discovering a previously unknown but predicted, older class of large LMC SNRs that are only visible optically. Finally, we suggest that most of these LMC SNRs are residing in a very rarefied environment towards the end of their evolutionary span where they become less visible to radio and X-ray telescopes.
The high sensitivity of the XMM-Newton instrumentation offers the opportunity to study faint and extended sources in the Milky Way and nearby galaxies such as the Large Magellanic Cloud (LMC) in detail. The ROSAT PSPC survey of the LMC has revealed m ore than 700 X-ray sources, among which there are 46 supernova remnants (SNRs) and candidates. We have observed the field around one of the most promising SNR candidates in the ROSAT PSPC catalogue, labelled [HP99] 456 with XMM-Newton, to determine its nature. We investigated the XMM-Newton data along with new radio-continuum, near infrared and optical data. In particular, spectral and morphological studies of the X-ray and radio data were performed. The X-ray images obtained in different energy bands reveal two different structures. Below 1.0 keV the X-ray emission shows the shell-like morphology of an SNR with a diameter of ~73 pc, one of the largest known in the LMC. For its thermal spectrum we estimate an electron temperature of (0.49 +/- 0.12)keV assuming non-equilibrium ionisation. The X-ray images above 1.0 keV reveal a less extended source within the SNR emission, located ~1 west of the centre of the SNR and coincident with bright point sources detected in radio-continuum. This hard component has an extent of 0.9 (i.e. ~13 pc at a distance of ~50 kpc) and a non-thermal spectrum. The hard source coincides in position with the ROSAT source [HP99] 456 and shows an indication for substructure. We firmly identify a new SNR in the LMC with a shell-like morphology and a thermal spectrum. Assuming the SNR to be in the Sedov phase yields an age of ~23 kyr. We explore possible associations of the hard non-thermal emitting component with a pulsar wind nebula (PWN) or background active galactic nuclei (AGN).
We present a three-dimensional kinematic reconstruction of the optically-emitting, oxygen-rich ejecta of supernova remnant N132D in the Large Magellanic Cloud. Data were obtained with the 6.5 m Magellan telescope in combination with the IMACS+GISMO i nstrument and survey [O III] $lambdalambda$4959,5007 line emission in a ${sim}$3$^{prime}~times$ 3$^{prime}$ region centered on N132D. The spatial and spectral resolution of our data enable detailed examination of the optical ejecta structure. The majority of N132Ds optically bright oxygen ejecta are arranged in a torus-like geometry tilted approximately 28$^{circ}$ with respect to the plane of the sky. The torus has a radius of 4.4 pc ($D_{rm LMC}$/50 kpc), exhibits a blue-shifted radial velocity asymmetry of $-3000$ to $+2300$ km s$^{-1}$, and has a conspicuous break in its circumference. Assuming homologous expansion from the geometric center of O-rich filaments, the average expansion velocity of 1745 km s$^{-1}$ translates to an age since explosion of 2450 $pm$ 195 yr. A faint, spatially-separated runaway knot (RK) with total space velocity of 3650 km s$^{-1}$ is nearly perpendicular to the torus plane and coincident with X-ray emission that is substantially enhanced in Si relative to the LMC and N132Ds bulk ejecta. These kinematic and chemical signatures suggest that the RK may have had its origin deep within the progenitor star. Overall, the main shell morphology and high-velocity, Si-enriched components of N132D have remarkable similarity with that of Cassiopeia A, which was the result of a Type IIb supernova explosion. Our results underscore the need for further observations and simulations that can robustly reconcile whether the observed morphology is dominated by explosion dynamics or shaped by interaction with the environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا