ترغب بنشر مسار تعليمي؟ اضغط هنا

SenseCare: A Research Platform for Medical Image Informatics and Interactive 3D Visualization

76   0   0.0 ( 0 )
 نشر من قبل Guotai Wang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Clinical research on smart healthcare has an increasing demand for intelligent and clinic-oriented medical image computing algorithms and platforms that support various applications. To this end, we have developed SenseCare research platform for smart healthcare, which is designed to boost translational research on intelligent diagnosis and treatment planning in various clinical scenarios. To facilitate clinical research with Artificial Intelligence (AI), SenseCare provides a range of AI toolkits for different tasks, including image segmentation, registration, lesion and landmark detection from various image modalities ranging from radiology to pathology. In addition, SenseCare is clinic-oriented and supports a wide range of clinical applications such as diagnosis and surgical planning for lung cancer, pelvic tumor, coronary artery disease, etc. SenseCare provides several appealing functions and features such as advanced 3D visualization, concurrent and efficient web-based access, fast data synchronization and high data security, multi-center deployment, support for collaborative research, etc. In this paper, we will present an overview of SenseCare as an efficient platform providing comprehensive toolkits and high extensibility for intelligent image analysis and clinical research in different application scenarios.



قيم البحث

اقرأ أيضاً

In this paper we propose applying the crowdsourcing approach to a software platform that uses a modern and state-of-the-art 3D game engine. This platform could facilitate the generation and manipulation of interactive 3D environments by a community o f users producing different content such as cultural heritage, scientific virtual labs, games, novel art forms and virtual museums.
Machine learning and many of its applications are considered hard to approach due to their complexity and lack of transparency. One mission of human-centric machine learning is to improve algorithm transparency and user satisfaction while ensuring an acceptable task accuracy. In this work, we present an interactive image restoration framework, which exploits both image prior and human painting knowledge in an iterative manner such that they can boost on each other. Additionally, in this system users can repeatedly get feedback of their interactions from the restoration progress. This informs the users about their impact on the restoration results, which leads to better sense of control, which can lead to greater trust and approachability. The positive results of both objective and subjective evaluation indicate that, our interactive approach positively contributes to the approachability of restoration algorithms in terms of algorithm performance and user experience.
We present a system that allows users to visualize complex human motion via 3D motion sculptures---a representation that conveys the 3D structure swept by a human body as it moves through space. Given an input video, our system computes the motion sc ulptures and provides a user interface for rendering it in different styles, including the options to insert the sculpture back into the original video, render it in a synthetic scene or physically print it. To provide this end-to-end workflow, we introduce an algorithm that estimates that humans 3D geometry over time from a set of 2D images and develop a 3D-aware image-based rendering approach that embeds the sculpture back into the scene. By automating the process, our system takes motion sculpture creation out of the realm of professional artists, and makes it applicable to a wide range of existing video material. By providing viewers with 3D information, motion sculptures reveal space-time motion information that is difficult to perceive with the naked eye, and allow viewers to interpret how different parts of the object interact over time. We validate the effectiveness of this approach with user studies, finding that our motion sculpture visualizations are significantly more informative about motion than existing stroboscopic and space-time visualization methods.
As the field of Spoken Dialogue Systems and Conversational AI grows, so does the need for tools and environments that abstract away implementation details in order to expedite the development process, lower the barrier of entry to the field, and offe r a common test-bed for new ideas. In this paper, we present Plato, a flexible Conversational AI platform written in Python that supports any kind of conversational agent architecture, from standard architectures to architectures with jointly-trained components, single- or multi-party interactions, and offline or online training of any conversational agent component. Plato has been designed to be easy to understand and debug and is agnostic to the underlying learning frameworks that train each component.
Graph data have become increasingly common. Visualizing them helps people better understand relations among entities. Unfortunately, existing graph visualization tools are primarily designed for single-person desktop use, offering limited support for interactive web-based exploration and online collaborative analysis. To address these issues, we have developed Argo Lite, a new in-browser interactive graph exploration and visualization tool. Argo Lite enables users to publish and share interactive graph visualizations as URLs and embedded web widgets. Users can explore graphs incrementally by adding more related nodes, such as highly cited papers cited by or citing a paper of interest in a citation network. Argo Lite works across devices and platforms, leveraging WebGL for high-performance rendering. Argo Lite has been used by over 1,000 students at Georgia Techs Data and Visual Analytics class. Argo Lite may serve as a valuable open-source tool for advancing multiple CIKM research areas, from data presentation, to interfaces for information systems and more.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا