ترغب بنشر مسار تعليمي؟ اضغط هنا

Contextual Pyramid Attention Network for Building Segmentation in Aerial Imagery

144   0   0.0 ( 0 )
 نشر من قبل Clint Sebastian
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Building extraction from aerial images has several applications in problems such as urban planning, change detection, and disaster management. With the increasing availability of data, Convolutional Neural Networks (CNNs) for semantic segmentation of remote sensing imagery has improved significantly in recent years. However, convolutions operate in local neighborhoods and fail to capture non-local features that are essential in semantic understanding of aerial images. In this work, we propose to improve building segmentation of different sizes by capturing long-range dependencies using contextual pyramid attention (CPA). The pathways process the input at multiple scales efficiently and combine them in a weighted manner, similar to an ensemble model. The proposed method obtains state-of-the-art performance on the Inria Aerial Image Labelling Dataset with minimal computation costs. Our method improves 1.8 points over current state-of-the-art methods and 12.6 points higher than existing baselines on the Intersection over Union (IoU) metric without any post-processing. Code and models will be made publicly available.



قيم البحث

اقرأ أيضاً

Semantic segmentation for aerial imagery is a challenging and important problem in remotely sensed imagery analysis. In recent years, with the success of deep learning, various convolutional neural network (CNN) based models have been developed. Howe ver, due to the varying sizes of the objects and imbalanced class labels, it can be challenging to obtain accurate pixel-wise semantic segmentation results. To address those challenges, we develop a novel semantic segmentation method and call it Contextual Hourglass Network. In our method, in order to improve the robustness of the prediction, we design a new contextual hourglass module which incorporates attention mechanism on processed low-resolution featuremaps to exploit the contextual semantics. We further exploit the stacked encoder-decoder structure by connecting multiple contextual hourglass modules from end to end. This architecture can effectively extract rich multi-scale features and add more feedback loops for better learning contextual semantics through intermediate supervision. To demonstrate the efficacy of our semantic segmentation method, we test it on Potsdam and Vaihingen datasets. Through the comparisons to other baseline methods, our method yields the best results on overall performance.
185 - Ruigang Niu , Xian Sun , Yu Tian 2020
Semantic segmentation in very high resolution (VHR) aerial images is one of the most challenging tasks in remote sensing image understanding. Most of the current approaches are based on deep convolutional neural networks (DCNNs). However, standard co nvolution with local receptive fields fails in modeling global dependencies. Prior researches have indicated that attention-based methods can capture long-range dependencies and further reconstruct the feature maps for better representation. Nevertheless, limited by the mere perspective of spacial and channel attention and huge computation complexity of self-attention mechanism, it is unlikely to model the effective semantic interdependencies between each pixel-pair of remote sensing data of complex spectra. In this work, we propose a novel attention-based framework named Hybrid Multiple Attention Network (HMANet) to adaptively capture global correlations from the perspective of space, channel and category in a more effective and efficient manner. Concretely, a class augmented attention (CAA) module embedded with a class channel attention (CCA) module can be used to compute category-based correlation and recalibrate the class-level information. Additionally, we introduce a simple yet effective region shuffle attention (RSA) module to reduce feature redundant and improve the efficiency of self-attention mechanism via region-wise representations. Extensive experimental results on the ISPRS Vaihingen and Potsdam benchmark demonstrate the effectiveness and efficiency of our HMANet over other state-of-the-art methods.
Automatic building segmentation is an important task for satellite imagery analysis and scene understanding. Most existing segmentation methods focus on the case where the images are taken from directly overhead (i.e., low off-nadir/viewing angle). T hese methods often fail to provide accurate results on satellite images with larger off-nadir angles due to the higher noise level and lower spatial resolution. In this paper, we propose a method that is able to provide accurate building segmentation for satellite imagery captured from a large range of off-nadir angles. Based on Bayesian deep learning, we explicitly design our method to learn the data noise via aleatoric and epistemic uncertainty modeling. Satellite image metadata (e.g., off-nadir angle and ground sample distance) is also used in our model to further improve the result. We show that with uncertainty modeling and metadata injection, our method achieves better performance than the baseline method, especially for noisy images taken from large off-nadir angles.
141 - Miao Hu , Yali Li , Lu Fang 2021
Learning pyramidal feature representations is crucial for recognizing object instances at different scales. Feature Pyramid Network (FPN) is the classic architecture to build a feature pyramid with high-level semantics throughout. However, intrinsic defects in feature extraction and fusion inhibit FPN from further aggregating more discriminative features. In this work, we propose Attention Aggregation based Feature Pyramid Network (A^2-FPN), to improve multi-scale feature learning through attention-guided feature aggregation. In feature extraction, it extracts discriminative features by collecting-distributing multi-level global context features, and mitigates the semantic information loss due to drastically reduced channels. In feature fusion, it aggregates complementary information from adjacent features to generate location-wise reassembly kernels for content-aware sampling, and employs channel-wise reweighting to enhance the semantic consistency before element-wise addition. A^2-FPN shows consistent gains on different instance segmentation frameworks. By replacing FPN with A^2-FPN in Mask R-CNN, our model boosts the performance by 2.1% and 1.6% mask AP when using ResNet-50 and ResNet-101 as backbone, respectively. Moreover, A^2-FPN achieves an improvement of 2.0% and 1.4% mask AP when integrated into the strong baselines such as Cascade Mask R-CNN and Hybrid Task Cascade.
Semantic segmentation is an essential part of deep learning. In recent years, with the development of remote sensing big data, semantic segmentation has been increasingly used in remote sensing. Deep convolutional neural networks (DCNNs) face the cha llenge of feature fusion: very-high-resolution remote sensing image multisource data fusion can increase the networks learnable information, which is conducive to correctly classifying target objects by DCNNs; simultaneously, the fusion of high-level abstract features and low-level spatial features can improve the classification accuracy at the border between target objects. In this paper, we propose a multipath encoder structure to extract features of multipath inputs, a multipath attention-fused block module to fuse multipath features, and a refinement attention-fused block module to fuse high-level abstract features and low-level spatial features. Furthermore, we propose a novel convolutional neural network architecture, named attention-fused network (AFNet). Based on our AFNet, we achieve state-of-the-art performance with an overall accuracy of 91.7% and a mean F1 score of 90.96% on the ISPRS Vaihingen 2D dataset and an overall accuracy of 92.1% and a mean F1 score of 93.44% on the ISPRS Potsdam 2D dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا