ﻻ يوجد ملخص باللغة العربية
Photometric surveys have provided incredible amounts of astronomical information in the form of images. However, astronomical images often contain artifacts that can critically hinder scientific analysis by misrepresenting intensities or contaminating catalogs as artificial objects. These affected pixels need to be masked and dealt with in any data reduction pipeline. In this paper, we present a flexible, iterative algorithm to recover (unmask) astronomical images where some pixels are lacking. We demonstrate the application of the method on some intensity calibration source images in CO Multi-line Imaging of Nearby Galaxies (COMING) Project conducted using the 45m telescope at Nobeyama Radio Observatory (NRO). The proposed algorithm restored artifacts due to a detector error in the intensity calibration source images. The restored images were used to calibrate 11 out of 147 observed galaxy maps in the survey. The tests show that the algorithm can restore measured intensities at sub 1% error even for noisy images (SNR = 2.4), despite lacking a significant part of the image. We present the formulation of the reconstruction algorithm, discuss its possibilities and limitations for extensions to other astronomical signals and the results of the COMING application.
Observations of the molecular gas in galaxies are vital to understanding the evolution and star-forming histories of galaxies. However, galaxies with molecular gas maps of their whole discs having sufficient resolution to distinguish galactic structu
We examined radial variations in molecular-gas based star formation efficiency (SFE), which is defined as star formation rate per unit molecular gas mass, for 80 galaxies selected from the CO Multi-line Imaging of Nearby Galaxies project (Sorai et al
While molecular gas mass is usually derived from $^{12}$CO($J$=1-0) - the most fundamental line to explore molecular gas - it is often derived from $^{12}$CO($J$=2-1) assuming a constant $^{12}$CO($J$=2-1)/$^{12}$CO($J$=1-0) line ratio ($R_{2/1}$). W
The $^{12}$CO $(J=1rightarrow0)$ velocity fields of a sample of 20 nearby spiral galaxies, selected from the CO Multi-line Imaging of Nearby Galaxies (COMING) legacy project of Nobeyama Radio Observatory, have been analyzed by Fourier decomposition t
We investigate the molecular gas properties of galaxies across the main sequence of star-forming (SF) galaxies in the local Universe using $^{12}$CO($J=1-0$) (hereafter $^{12}$CO) and $^{13}$CO($J=1-0$) ($^{13}$CO) mapping data of 147 nearby galaxies