We study light absorption in many-electron interacting systems beyond the linear regime by using a {em single} broadband impulse of an electric field in the instantaneous limit. We determine non-pertubatively the absorption cross section from the Fourier transform of the time-dependent induced dipole moment, which can be obtained from the time evolution of the wavefunction. We discuss the dependence of the resulting cross section on the magnitude of the impulse and we highlight the advantages of this method in comparison with perturbation theory working on a one-dimensional model system for which numerically exact solutions are accessible. Thus we demonstrate that the considered non pertubative approach provides us with an effective tool for investigating fluence-dependent nonlinear optical excitations.