ترغب بنشر مسار تعليمي؟ اضغط هنا

Advanced Evasion Attacks and Mitigations on Practical ML-Based Phishing Website Classifiers

137   0   0.0 ( 0 )
 نشر من قبل Sen Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Machine learning (ML) based approaches have been the mainstream solution for anti-phishing detection. When they are deployed on the client-side, ML-based classifiers are vulnerable to evasion attacks. However, such potential threats have received relatively little attention because existing attacks destruct the functionalities or appearance of webpages and are conducted in the white-box scenario, making it less practical. Consequently, it becomes imperative to understand whether it is possible to launch evasion attacks with limited knowledge of the classifier, while preserving the functionalities and appearance. In this work, we show that even in the grey-, and black-box scenarios, evasion attacks are not only effective on practical ML-based classifiers, but can also be efficiently launched without destructing the functionalities and appearance. For this purpose, we propose three mutation-based attacks, differing in the knowledge of the target classifier, addressing a key technical challenge: automatically crafting an adversarial sample from a known phishing website in a way that can mislead classifiers. To launch attacks in the white- and grey-box scenarios, we also propose a sample-based collision attack to gain the knowledge of the target classifier. We demonstrate the effectiveness and efficiency of our evasion attacks on the state-of-the-art, Googles phishing page filter, achieved 100% attack success rate in less than one second per website. Moreover, the transferability attack on BitDefenders industrial phishing page classifier, TrafficLight, achieved up to 81.25% attack success rate. We further propose a similarity-based method to mitigate such evasion attacks, Pelican. We demonstrate that Pelican can effectively detect evasion attacks. Our findings contribute to design more robust phishing website classifiers in practice.



قيم البحث

اقرأ أيضاً

237 - Bushra Sabir 2020
Background: Over the year, Machine Learning Phishing URL classification (MLPU) systems have gained tremendous popularity to detect phishing URLs proactively. Despite this vogue, the security vulnerabilities of MLPUs remain mostly unknown. Aim: To add ress this concern, we conduct a study to understand the test time security vulnerabilities of the state-of-the-art MLPU systems, aiming at providing guidelines for the future development of these systems. Method: In this paper, we propose an evasion attack framework against MLPU systems. To achieve this, we first develop an algorithm to generate adversarial phishing URLs. We then reproduce 41 MLPU systems and record their baseline performance. Finally, we simulate an evasion attack to evaluate these MLPU systems against our generated adversarial URLs. Results: In comparison to previous works, our attack is: (i) effective as it evades all the models with an average success rate of 66% and 85% for famous (such as Netflix, Google) and less popular phishing targets (e.g., Wish, JBHIFI, Officeworks) respectively; (ii) realistic as it requires only 23ms to produce a new adversarial URL variant that is available for registration with a median cost of only $11.99/year. We also found that popular online services such as Google SafeBrowsing and VirusTotal are unable to detect these URLs. (iii) We find that Adversarial training (successful defence against evasion attack) does not significantly improve the robustness of these systems as it decreases the success rate of our attack by only 6% on average for all the models. (iv) Further, we identify the security vulnerabilities of the considered MLPU systems. Our findings lead to promising directions for future research. Conclusion: Our study not only illustrate vulnerabilities in MLPU systems but also highlights implications for future study towards assessing and improving these systems.
Graph modeling allows numerous security problems to be tackled in a general way, however, little work has been done to understand their ability to withstand adversarial attacks. We design and evaluate two novel graph attacks against a state-of-the-ar t network-level, graph-based detection system. Our work highlights areas in adversarial machine learning that have not yet been addressed, specifically: graph-based clustering techniques, and a global feature space where realistic attackers without perfect knowledge must be accounted for (by the defenders) in order to be practical. Even though less informed attackers can evade graph clustering with low cost, we show that some practical defenses are possible.
96 - Deqiang Li , Qianmu Li 2020
Malware remains a big threat to cyber security, calling for machine learning based malware detection. While promising, such detectors are known to be vulnerable to evasion attacks. Ensemble learning typically facilitates countermeasures, while attack ers can leverage this technique to improve attack effectiveness as well. This motivates us to investigate which kind of robustness the ensemble defense or effectiveness the ensemble attack can achieve, particularly when they combat with each other. We thus propose a new attack approach, named mixture of attacks, by rendering attackers capable of multiple generative methods and multiple manipulation sets, to perturb a malware example without ruining its malicious functionality. This naturally leads to a new instantiation of adversarial training, which is further geared to enhancing the ensemble of deep neural networks. We evaluate defenses using Android malware detectors against 26 different attacks upon two practical datasets. Experimental results show that the new adversarial training significantly enhances the robustness of deep neural networks against a wide range of attacks, ensemble methods promote the robustness when base classifiers are robust enough, and yet ensemble attacks can evade the enhanced malware detectors effectively, even notably downgrading the VirusTotal service.
The persistent growth in phishing and the rising volume of phishing websites has led to individuals and organizations worldwide becoming increasingly exposed to various cyber-attacks. Consequently, more effective phishing detection is required for im proved cyber defence. Hence, in this paper we present a deep learning-based approach to enable high accuracy detection of phishing sites. The proposed approach utilizes convolutional neural networks (CNN) for high accuracy classification to distinguish genuine sites from phishing sites. We evaluate the models using a dataset obtained from 6,157 genuine and 4,898 phishing websites. Based on the results of extensive experiments, our CNN based models proved to be highly effective in detecting unknown phishing sites. Furthermore, the CNN based approach performed better than traditional machine learning classifiers evaluated on the same dataset, reaching 98.2% phishing detection rate with an F1-score of 0.976. The method presented in this paper compares favourably to the state-of-the art in deep learning based phishing website detection.
139 - Han Qiu , Yi Zeng , Qinkai Zheng 2020
Deep Neural Networks (DNNs) are well-known to be vulnerable to Adversarial Examples (AEs). A large amount of efforts have been spent to launch and heat the arms race between the attackers and defenders. Recently, advanced gradient-based attack techni ques were proposed (e.g., BPDA and EOT), which have defeated a considerable number of existing defense methods. Up to today, there are still no satisfactory solutions that can effectively and efficiently defend against those attacks. In this paper, we make a steady step towards mitigating those advanced gradient-based attacks with two major contributions. First, we perform an in-depth analysis about the root causes of those attacks, and propose four properties that can break the fundamental assumptions of those attacks. Second, we identify a set of operations that can meet those properties. By integrating these operations, we design two preprocessing functions that can invalidate these powerful attacks. Extensive evaluations indicate that our solutions can effectively mitigate all existing standard and advanced attack techniques, and beat 11 state-of-the-art defense solutions published in top-tier conferences over the past 2 years. The defender can employ our solutions to constrain the attack success rate below 7% for the strongest attacks even the adversary has spent dozens of GPU hours.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا