ﻻ يوجد ملخص باللغة العربية
Bitcoin was the first successful decentralized cryptocurrency and remains the most popular of its kind to this day. Despite the benefits of its blockchain, Bitcoin still faces serious scalability issues, most importantly its ever-increasing blockchain size. While alternative designs introduced schemes to periodically create snapshots and thereafter prune older blocks, already-deployed systems such as Bitcoin are often considered incapable of adopting corresponding approaches. In this work, we revise this popular belief and present CoinPrune, a snapshot-based pruning scheme that is fully compatible with Bitcoin. CoinPrune can be deployed through an opt-in velvet fork, i.e., without impeding the established Bitcoin network. By requiring miners to publicly announce and jointly reaffirm recent snapshots on the blockchain, CoinPrune establishes trust into the snapshots correctness even in the presence of powerful adversaries. Our evaluation shows that CoinPrune reduces the storage requirements of Bitcoin already by two orders of magnitude today, with further relative savings as the blockchain grows. In our experiments, nodes only have to fetch and process 5 GiB instead of 230 GiB of data when joining the network, reducing the synchronization time on powerful devices from currently 5 h to 46 min, with even more savings for less powerful devices.
Blockchain protocols come with a variety of security guarantees. For example, BFT-inspired protocols such as Algorand tend to be secure in the partially synchronous setting, while longest chain protocols like Bitcoin will normally require stronger sy
Secure routing protocols for mobile ad hoc networks have been developed recently, yet, it has been unclear what are the properties they achieve, as a formal analysis of these protocols is mostly lacking. In this paper, we are concerned with this prob
The use of the term blockchain is documented for disparate projects, from cryptocurrencies to applications for the Internet of Things (IoT), and many more. The concept of blockchain appears therefore blurred, as it is hard to believe that the same te
This paper we define a new Puzzle called Proof-of-Interaction and we show how it can replace, in the Bitcoin protocol, the Proof-of-Work algorithm.
This paper deals with design of an integrated secure Blockchain network framework to prevent damages from attackers. The multi-layer concept which could handle multiple number of networks is adapted on the top of Blockchain Governance Game frameworks