ترغب بنشر مسار تعليمي؟ اضغط هنا

A Sensitivity Matrix Based Methodology for Inverse Problem Formulation

56   0   0.0 ( 0 )
 نشر من قبل Ariel Cintron-Arias
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an algorithm to select parameter subset combinations that can be estimated using an ordinary least-squares (OLS) inverse problem formulation with a given data set. First, the algorithm selects the parameter combinations that correspond to sensitivity matrices with full rank. Second, the algorithm involves uncertainty quantification by using the inverse of the Fisher Information Matrix. Nominal values of parameters are used to construct synthetic data sets, and explore the effects of removing certain parameters from those to be estimated using OLS procedures. We quantify these effects in a score for a vector parameter defined using the norm of the vector of standard errors for components of estimates divided by the estimates. In some cases the method leads to reduction of the standard error for a parameter to less than 1% of the estimate.



قيم البحث

اقرأ أيضاً

The estimation of EEG generating sources constitutes an Inverse Problem (IP) in Neuroscience. This is an ill-posed problem, due to the non-uniqueness of the solution, and many kinds of prior information have been used to constrain it. A combination o f smoothness (L2 norm-based) and sparseness (L1 norm-based) constraints is a flexible approach that have been pursued by important examples such as the Elastic Net (ENET) and mixed-norm (MXN) models. The former is used to find solutions with a small number of smooth non-zero patches, while the latter imposes sparseness and smoothness simultaneously along different dimensions of the spatio-temporal matrix solutions. Both models have been addressed within the penalized regression approach, where the regularization parameters are selected heuristically, leading usually to non-optimal solutions. The existing Bayesian formulation of ENET allows hyperparameter learning, but using computationally intensive Monte Carlo/Expectation Maximization methods. In this work we attempt to solve the EEG IP using a Bayesian framework for models based on mixtures of L1/L2 norms penalization functions (Laplace/Normal priors) such as ENET and MXN. We propose a Sparse Bayesian Learning algorithm based on combining the Empirical Bayes and the iterative coordinate descent procedures to estimate both the parameters and hyperparameters. Using simple but realistic simulations we found that our methods are able to recover complicated source setups more accurately and with a more robust variable selection than the ENET and LASSO solutions using classical algorithms. We also solve the EEG IP using data coming from a visual attention experiment, finding more interpretable neurophysiological patterns with our methods, as compared with other known methods such as LORETA, ENET and LASSO FUSION using the classical regularization approach.
We discuss methods for {em a priori} selection of parameters to be estimated in inverse problem formulations (such as Maximum Likelihood, Ordinary and Generalized Least Squares) for dynamical systems with numerous state variables and an even larger n umber of parameters. We illustrate the ideas with an in-host model for HIV dynamics which has been successfully validated with clinical data and used for prediction.
353 - Xin Gao , Daniel Q. Pu , Yuehua Wu 2009
In a Gaussian graphical model, the conditional independence between two variables are characterized by the corresponding zero entries in the inverse covariance matrix. Maximum likelihood method using the smoothly clipped absolute deviation (SCAD) pen alty (Fan and Li, 2001) and the adaptive LASSO penalty (Zou, 2006) have been proposed in literature. In this article, we establish the result that using Bayesian information criterion (BIC) to select the tuning parameter in penalized likelihood estimation with both types of penalties can lead to consistent graphical model selection. We compare the empirical performance of BIC with cross validation method and demonstrate the advantageous performance of BIC criterion for tuning parameter selection through simulation studies.
One of the most popular methodologies for estimating the average treatment effect at the threshold in a regression discontinuity design is local linear regression (LLR), which places larger weight on units closer to the threshold. We propose a Gaussi an process regression methodology that acts as a Bayesian analog to LLR for regression discontinuity designs. Our methodology provides a flexible fit for treatment and control responses by placing a general prior on the mean response functions. Furthermore, unlike LLR, our methodology can incorporate uncertainty in how units are weighted when estimating the treatment effect. We prove our method is consistent in estimating the average treatment effect at the threshold. Furthermore, we find via simulation that our method exhibits promising coverage, interval length, and mean squared error properties compared to standard LLR and state-of-the-art LLR methodologies. Finally, we explore the performance of our method on a real-world example by studying the impact of being a first-round draft pick on the performance and playing time of basketball players in the National Basketball Association.
138 - Tailen Hsing , Haobo Ren 2009
Suppose that $Y$ is a scalar and $X$ is a second-order stochastic process, where $Y$ and $X$ are conditionally independent given the random variables $xi_1,...,xi_p$ which belong to the closed span $L_X^2$ of $X$. This paper investigates a unified fr amework for the inverse regression dimension-reduction problem. It is found that the identification of $L_X^2$ with the reproducing kernel Hilbert space of $X$ provides a platform for a seamless extension from the finite- to infinite-dimensional settings. It also facilitates convenient computational algorithms that can be applied to a variety of models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا