ﻻ يوجد ملخص باللغة العربية
We propose an algorithm to select parameter subset combinations that can be estimated using an ordinary least-squares (OLS) inverse problem formulation with a given data set. First, the algorithm selects the parameter combinations that correspond to sensitivity matrices with full rank. Second, the algorithm involves uncertainty quantification by using the inverse of the Fisher Information Matrix. Nominal values of parameters are used to construct synthetic data sets, and explore the effects of removing certain parameters from those to be estimated using OLS procedures. We quantify these effects in a score for a vector parameter defined using the norm of the vector of standard errors for components of estimates divided by the estimates. In some cases the method leads to reduction of the standard error for a parameter to less than 1% of the estimate.
The estimation of EEG generating sources constitutes an Inverse Problem (IP) in Neuroscience. This is an ill-posed problem, due to the non-uniqueness of the solution, and many kinds of prior information have been used to constrain it. A combination o
We discuss methods for {em a priori} selection of parameters to be estimated in inverse problem formulations (such as Maximum Likelihood, Ordinary and Generalized Least Squares) for dynamical systems with numerous state variables and an even larger n
In a Gaussian graphical model, the conditional independence between two variables are characterized by the corresponding zero entries in the inverse covariance matrix. Maximum likelihood method using the smoothly clipped absolute deviation (SCAD) pen
One of the most popular methodologies for estimating the average treatment effect at the threshold in a regression discontinuity design is local linear regression (LLR), which places larger weight on units closer to the threshold. We propose a Gaussi
Suppose that $Y$ is a scalar and $X$ is a second-order stochastic process, where $Y$ and $X$ are conditionally independent given the random variables $xi_1,...,xi_p$ which belong to the closed span $L_X^2$ of $X$. This paper investigates a unified fr