ﻻ يوجد ملخص باللغة العربية
In order to enhance LIDAR performance metrics such as target detection sensitivity, noise resilience and ranging accuracy, we exploit the strong temporal correlation within the photon pairs generated in continuous-wave pumped semiconductor waveguides. The enhancement attained through the use of such non-classical sources is measured and compared to a corresponding target detection scheme based on simple photon-counting detection. The performances of both schemes are quantified by the estimation uncertainty and Fisher information of the probe photon transmission, which is a widely adopted sensing figure of merit. The target detection experiments are conducted with high probe channel loss ((simeq 1-5times10^{-5})) and formidable environment noise up to 36 dB stronger than the detected probe power of (1.64times 10^{-5}) pW. The experimental result shows significant advantages offered by the enhanced scheme with up to 26.3 dB higher performance in terms of estimation uncertainty, which is equivalent to a reduction of target detection time by a factor of 430 or 146 (21.6 dB) times more resilience to noise. We also experimentally demonstrated ranging with these non-classical photon pairs generated with continuous-wave pump in the presence of strong noise and loss, achieving (approx)5 cm distance resolution that is limited by the temporal resolution of the detectors.
The ability to generate complex optical photon states involving entanglement between multiple optical modes is not only critical to advancing our understanding of quantum mechanics but will play a key role in generating many applications in quantum t
Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional
Stimulated Raman spectroscopy has become a powerful tool to study the spatiodynamics of molecular bonds with high sensitivity, resolution and speed. However, sensitivity and speed of state-of-the-art stimulated Raman spectroscopy are currently limite
Nowadays fiber biphoton sources are nearly as popular as crystal-based ones. They offer a single spatial mode and easy integrability into optical networks. However, fiber sources lack the broad tunability of crystals, which do not require a tunable p
We present an inexpensive architecture for converting a frequency-modulated continuous-wave LiDAR system into a compressive-sensing based depth-mapping camera. Instead of raster scanning to obtain depth-maps, compressive sensing is used to significan