ﻻ يوجد ملخص باللغة العربية
In this paper, we study the elastic properties of the entropy-stabilized oxide (Mg, Co, Ni, Cu, Zn)O, using experimental and first principles techniques. Our measurements of the indentation modulus on grains with a wide range of crystallographic orientations of the entropy-stabilized oxide revealed a high degree of elastic isotropy at ambient conditions. First principles calculations predict mild elastic anisotropy for the paramagnetic structure, which decreases when the system is considered to be non-magnetic. When the antiferromagnetic state of CoO, CuO and NiO is accounted for in the calculations, a slight increase in the elastic anisotropy is observed, suggesting a coupling between magnetic ordering and the orientation dependent elastic properties. Furthermore, an examination of the local structure reveals that the isotropy is favored through local ionic distortions of Cu and Zn - due to their tendency to form tenorite and wurtzite phases. The relationships between the elastic properties of the multicomponent oxide and those of its constituent binary oxides are reviewed. These insights open up new avenues for controlling isotropy for technological applications through tuning composition and structure in the entropy-stabilized oxide or the high entropy compounds in general.
For the first time, this study shows that distortion in a crystal structure due to magnetic effect is possible in a lattice with extreme chemical disorder. The multicomponent equimolar transition metal oxide (ME TMO), (Co,Cu,Mg,Ni,Zn)O, which is a hi
We demonstrate by means of fully relativistic first principles calculations that, by substitution of Fe by Cr, Mn, Co, Ni or Cu in FePt-L10 bulk alloys, with fixed Pt content, it is possible to tune the magnetocrystalline anisotropy energy by adjusti
Using the spectroscopies based upon x-ray absorption, we have studied the structural and magnetic properties of Zn$_{1-x}$Co$_{x}$O films ($x$ = 0.1 and 0.25) produced by reactive magnetron sputtering. These films show ferromagnetism with a Curie tem
We present a spectroscopic study of (Zn,Co)O layers grown by molecular beam epitaxy on sapphire substrates. (Zn,Co)O is commonly considered as a promising candidate for being a Diluted Magnetic Semiconductor ferromagnetic at room temperature. We perf
The existence of the miscibility gap in the Cu-Ni system has been an issue in both computational and experimental discussions for half a century [Chakrabarti et al., Phase diagrams of binary nickel alloys, ASM, 1991]. Here we propose a new miscibilit