ﻻ يوجد ملخص باللغة العربية
In this work we calculate the mass spectrum of strangeonium up to the $3D$ multiplet within a nonrelativistic linear potential quark model. Furthermore, using the obtained wave functions, we also evaluate the strong decays of the strangeonium states with the $^3P_0$ model. Based on our successful explanations of the well established states $phi(1020)$, $phi(1680)$, $h_1(1415)$, $f_2(1525)$, and $phi_3(1850)$, we further discuss the possible assignments of strangeonium-like states from experiments by combining our theoretical results with the observations. It is found that some resonances, such as $f_2(2010)$ and $f_2(2150)$ listed by the Particle Data Group, and $X(2062)$ and $X(2500)$ newly observed by BESIII, may be interpreted as the strangeonium states. The possibility of $phi(2170)$ as a candidate for $phi(3S)$ or $phi(2D)$ cannot be excluded. We expect our results to provide useful references for looking for the missing $sbar{s}$ states in future experiments.
Combining the recent developments of the observations of $Omega$ sates we calculate the $Omega$ spectrum up to the $N=2$ shell within a nonrelativistic constituent quark potential model. Furthermore, the strong and radiative decay properties for the
The strong decays of charm-strange baryons up to N=2 shell are studied in a chiral quark model. The theoretical predictions for the well determined charm-strange baryons, $Xi_c^*(2645)$, $Xi_c(2790)$ and $Xi_c(2815)$, are in good agreement with the e
We systematically study the mass spectrum and strong decays of the S-wave $bar cbar s q q$ states in the compact tetraquark scenario with the quark model. The key ingredients of the model are the Coulomb, the linear confinement, and the hyperfine int
We calculate the matrix elements of the color-spin interaction for all possible multi-quark states of tribaryons in flavor SU(3) broken case. For that purpose, we construct the flavor$otimes$color$otimes$spin wave functions of the tribaryons, which a
In this work, we study the mass spectrum of the $Omega_{ccc}$ and $Omega_{bbb}$ baryons up to the $N=2$ shell within a nonrelativistic constituent quark model (NRCQM). The model parameters are adopted from the determinations by fitting the charmonium