ﻻ يوجد ملخص باللغة العربية
We thoroughly analyze the number of independent zero modes and their zero points on the toroidal orbifold $T^2/mathbb{Z}_N$ ($N = 2, 3, 4, 6$) with magnetic flux background, inspired by the Atiyah-Singer index theorem. We first show a complete list for the number $n_{eta}$ of orbifold zero modes belonging to $mathbb{Z}_{N}$ eigenvalue $eta$. Since it turns out that $n_{eta}$ quite complicatedly depends on the flux quanta $M$, the Scherk-Schwarz twist phase $(alpha_1, alpha_2)$, and the $mathbb{Z}_{N}$ eigenvalue $eta$, it seems hard that $n_{eta}$ can be universally explained in a simple formula. We, however, succeed in finding a single zero-mode counting formula $n_{eta} = (M-V_{eta})/N + 1$, where $V_{eta}$ denotes the sum of winding numbers at the fixed points on the orbifold $T^2/mathbb{Z}_N$. The formula is shown to hold for any pattern.
We discuss the modular symmetry and zeros of zero-mode wave functions on two-dimensional torus $T^2$ and toroidal orbifolds $T^2/mathbb{Z}_N$ ($N=2,3,4,6$) with a background homogeneous magnetic field. As is well-known, magnetic flux contributes to t
Systematic classification of Z2xZ2 orbifold compactifications of the heterotic-string was pursued by using its free fermion formulation. The method entails random generation of string vacua and analysis of their entire spectra, and led to discovery o
Of what use are the zeros of the Riemann zeta function? We can use sums involving zeta zeros to count the primes up to $x$. Perrons formula leads to sums over zeta zeros that can count the squarefree integers up to $x$, or tally Eulers $phi$ function
Relative orbifold Gromov-Witten theory is set-up and the degeneration formula is given.
We review the properties of orbifold operations on two-dimensional quantum field theories, either bosonic or fermionic, and describe the Orbifold groupoids which control the composition of orbifold operations. Three-dimensional TQFTs of Dijkgraaf-Wit