ﻻ يوجد ملخص باللغة العربية
The most puzzling aspect of the strange metal behavior of correlated electron compounds is that the linear in temperature resistivity often extends down to low temperatures, lower than natural microscopic energy scales. We consider recently proposed deconfined critical points (or phases) in models of electrons in large dimension lattices with random nearest-neighbor exchange interactions. The criticality is in the class of Sachdev-Ye-Kitaev models, and exhibits a time reparameterization soft mode representing gravity in dual holographic theories. We compute the low temperature resistivity in a large $M$ limit of models with SU($M$) spin symmetry, and find that the dominant temperature dependence arises from this soft mode. The resistivity is linear in temperature down to zero temperature at the critical point, with a co-efficient universally proportional to the product of the residual resistivity and the co-efficient of the linear in temperature specific heat. We argue that the time reparameterization soft mode offers a promising and generic mechanism for resolving the strange metal puzzle.
Recent experimental results: (i) the measurement of the $T ln T$ specific heat in cuprates and the earlier such results in some heavy fermion compounds, (ii) the measurement of the single-particle scattering rates, (iii) the density fluctuation spect
A variety of strange metals exhibit resistivity that decreases linearly with temperature as $Trightarrow 0$, in contrast with conventional metals where resistivity decreases as $T^2$. This $T$-linear resistivity has been attributed to charge carriers
We have mapped from the quantum to the classical limit the spin excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain system CsNiCl3 in its paramagnetic phase from T=5 to 200K. Neutron scattering shows that the excitations are resonant
We explain recent challenging experimental observations of universal scattering rate related to the linear-temperature resistivity exhibited by a large corps of both strongly correlated Fermi systems and conventional metals. We show that the observed
Soft glassy materials are out of thermodynamic equilibrium and show time dependent slowing down of the relaxation dynamics. Under such situation these materials follow Boltzmann superposition principle only in the effective time domain, wherein time