ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on blind contact tracing at scale with applications to the COVID-19 pandemic

69   0   0.0 ( 0 )
 نشر من قبل Tom Rainforth
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The current COVID-19 pandemic highlights the utility of contact tracing, when combined with case isolation and social distancing, as an important tool for mitigating the spread of a disease [1]. Contact tracing provides a mechanism of identifying individuals with a high likelihood of previous exposure to a contagious disease, allowing additional precautions to be put in place to prevent continued transmission. Here we consider a cryptographic approach to contact tracing based on secure two-party computation (2PC). We begin by considering the problem of comparing a set of location histories held by two parties to determine whether they have come within some threshold distance while at the same time maintaining the privacy of the location histories. We propose a solution to this problem using pre-shared keys, adapted from an equality testing protocol due to Ishai et al [2]. We discuss how this protocol can be used to maintain privacy within practical contact tracing scenarios, including both app-based approaches and approaches which leverage location history held by telecoms and internet service providers. We examine the efficiency of this approach and show that existing infrastructure is sufficient to support anonymised contact tracing at a national level.



قيم البحث

اقرأ أيضاً

The 2019 Coronavirus disease (COVID-19) pandemic, caused by a quick dissemination of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has had a deep impact worldwide, both in terms of the loss of human life and the economic and socia l disruption. The use of digital technologies has been seen as an important effort to combat the pandemic and one of such technologies is contact tracing applications. These applications were successfully employed to face other infectious diseases, thus they have been used during the current pandemic. However, the use of contact tracing poses several privacy concerns since it is necessary to store and process data which can lead to the user/device identification as well as location and behavior tracking. These concerns are even more relevant when considering nationwide implementations since they can lead to mass surveillance by authoritarian governments. Despite the restrictions imposed by data protection laws from several countries, there are still doubts on the preservation of the privacy of the users. In this article, we analyze the privacy features in national contact tracing COVID-19 applications considering their intrinsic characteristics. As a case study, we discuss in more depth the Brazilian COVID-19 application Coronavirus-SUS, since Brazil is one of the most impacted countries by the current pandemic. Finally, as we believe contact tracing will continue to be employed as part of the strategy for the current and potential future pandemics, we present key research challenges.
The recent outbreak of COVID-19 has taken the world by surprise, forcing lockdowns and straining public health care systems. COVID-19 is known to be a highly infectious virus, and infected individuals do not initially exhibit symptoms, while some rem ain asymptomatic. Thus, a non-negligible fraction of the population can, at any given time, be a hidden source of transmissions. In response, many governments have shown great interest in smartphone contact tracing apps that help automate the difficult task of tracing all recent contacts of newly identified infected individuals. However, tracing apps have generated much discussion around their key attributes, including system architecture, data management, privacy, security, proximity estimation, and attack vulnerability. In this article, we provide the first comprehensive review of these much-discussed tracing app attributes. We also present an overview of many proposed tracing app examples, some of which have been deployed countrywide, and discuss the concerns users have reported regarding their usage. We close by outlining potential research directions for next-generation app design, which would facilitate improved tracing and security performance, as well as wide adoption by the population at large.
65 - Lucy Simko 2020
There is growing interest in technology-enabled contact tracing, the process of identifying potentially infected COVID-19 patients by notifying all recent contacts of an infected person. Governments, technology companies, and research groups alike re cognize the potential for smartphones, IoT devices, and wearable technology to automatically track close contacts and identify prior contacts in the event of an individuals positive test. However, there is currently significant public discussion about the tensions between effective technology-based contact tracing and the privacy of individuals. To inform this discussion, we present the results of a sequence of online surveys focused on contact tracing and privacy, each with 100 participants. Our first surveys were on April 1 and 3, and we report primarily on those first two surveys, though we present initial findings from later survey dates as well. Our results present the diversity of public opinion and can inform the public discussion on whether and how to leverage technology to reduce the spread of COVID-19. We are continuing to conduct longitudinal measurements, and will update this report over time; citations to this version of the report should reference Report Version 1.0, May 8, 2020. NOTE: As of December 4, 2020, this report has been superseded by Report Version 2.0, found at arXiv:2012.01553. Please read and cite Report Version 2.0 instead.
In this paper, we propose a new privacy-preserving, automated contact tracing system, ACOUSTIC-TURF, to fight COVID-19 using acoustic signals sent from ubiquitous mobile devices. At a high level, ACOUSTIC-TURF adaptively broadcasts inaudible ultrason ic signals with randomly generated IDs in the vicinity. Simultaneously, the system receives other ultrasonic signals sent from nearby (e.g., 6 feet) users. In such a system, individual user IDs are not disclosed to others and the system can accurately detect encounters in physical proximity with 6-foot granularity. We have implemented a prototype of ACOUSTIC-TURF on Android and evaluated its performance in terms of acoustic-signal-based encounter detection accuracy and power consumption at different ranges and under various occlusion scenarios. Experimental results show that ACOUSTIC-TURF can detect multiple contacts within a 6-foot range for mobile phones placed in pockets and outside pockets. Furthermore, our acoustic-signal-based system achieves greater precision than wireless-signal-based approaches when contact tracing is performed through walls. ACOUSTIC-TURF correctly determines that people on opposite sides of a wall are not in contact with one another, whereas the Bluetooth-based approaches detect nonexistent contacts among them.
Recently, as a consequence of the COVID-19 pandemic, dependence on Contact Tracing (CT) models has significantly increased to prevent spread of this highly contagious virus and be prepared for the potential future ones. Since the spreading probabilit y of the novel coronavirus in indoor environments is much higher than that of the outdoors, there is an urgent and unmet quest to develop/design efficient, autonomous, trustworthy, and secure indoor CT solutions. Despite such an urgency, this field is still in its infancy. The paper addresses this gap and proposes the Trustworthy Blockchain-enabled system for Indoor Contact Tracing (TB-ICT) framework. The TB-ICT framework is proposed to protect privacy and integrity of the underlying CT data from unauthorized access. More specifically, it is a fully distributed and innovative blockchain platform exploiting the proposed dynamic Proof of Work (dPoW) credit-based consensus algorithm coupled with Randomized Hash Window (W-Hash) and dynamic Proof of Credit (dPoC) mechanisms to differentiate between honest and dishonest nodes. The TB-ICT not only provides a decentralization in data replication but also quantifies the nodes behavior based on its underlying credit-based mechanism. For achieving high localization performance, we capitalize on availability of Internet of Things (IoT) indoor localization infrastructures, and develop a data driven localization model based on Bluetooth Low Energy (BLE) sensor measurements. The simulation results show that the proposed TB-ICT prevents the COVID-19 from spreading by implementation of a highly accurate contact tracing model while improving the users privacy and security.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا