ﻻ يوجد ملخص باللغة العربية
The current COVID-19 pandemic highlights the utility of contact tracing, when combined with case isolation and social distancing, as an important tool for mitigating the spread of a disease [1]. Contact tracing provides a mechanism of identifying individuals with a high likelihood of previous exposure to a contagious disease, allowing additional precautions to be put in place to prevent continued transmission. Here we consider a cryptographic approach to contact tracing based on secure two-party computation (2PC). We begin by considering the problem of comparing a set of location histories held by two parties to determine whether they have come within some threshold distance while at the same time maintaining the privacy of the location histories. We propose a solution to this problem using pre-shared keys, adapted from an equality testing protocol due to Ishai et al [2]. We discuss how this protocol can be used to maintain privacy within practical contact tracing scenarios, including both app-based approaches and approaches which leverage location history held by telecoms and internet service providers. We examine the efficiency of this approach and show that existing infrastructure is sufficient to support anonymised contact tracing at a national level.
The 2019 Coronavirus disease (COVID-19) pandemic, caused by a quick dissemination of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has had a deep impact worldwide, both in terms of the loss of human life and the economic and socia
The recent outbreak of COVID-19 has taken the world by surprise, forcing lockdowns and straining public health care systems. COVID-19 is known to be a highly infectious virus, and infected individuals do not initially exhibit symptoms, while some rem
There is growing interest in technology-enabled contact tracing, the process of identifying potentially infected COVID-19 patients by notifying all recent contacts of an infected person. Governments, technology companies, and research groups alike re
In this paper, we propose a new privacy-preserving, automated contact tracing system, ACOUSTIC-TURF, to fight COVID-19 using acoustic signals sent from ubiquitous mobile devices. At a high level, ACOUSTIC-TURF adaptively broadcasts inaudible ultrason
Recently, as a consequence of the COVID-19 pandemic, dependence on Contact Tracing (CT) models has significantly increased to prevent spread of this highly contagious virus and be prepared for the potential future ones. Since the spreading probabilit