ترغب بنشر مسار تعليمي؟ اضغط هنا

Functional Equations and Separation of Variables for Exact g-Function

74   0   0.0 ( 0 )
 نشر من قبل Shota Komatsu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The g-function is a measure of degrees of freedom associated to a boundary of two-dimensional quantum field theories. In integrable theories, it can be computed exactly in a form of the Fredholm determinant, but it is often hard to evaluate numerically. In this paper, we derive functional equations---or equivalently integral equations of the thermodynamic Bethe ansatz (TBA) type---which directly compute the g-function in the simplest integrable theory; the sinh-Gordon theory at the self-dual point. The derivation is based on the classic result by Tracy and Widom on the relation between Fredholm determinants and TBA, which was used also in the context of topological string. We demonstrate the efficiency of our formulation through the numerical computation and compare the results in the UV limit with the Liouville CFT. As a side result, we present multiple integrals of Q-functions which we conjecture to describe a universal part of the g-function, and discuss its implication to integrable spin chains.



قيم البحث

اقرأ أيضاً

Alday, Gaiotto, and Tachikawa conjectured relations between certain 4d N=2 supersymmetric field theories and 2d Liouville conformal field theory. We study generalizations of these relations to 4d theories with surface operators. For one type of surfa ce operators the corresponding 2d theory is the WZW model, and for another type - the Liouville theory with insertions of extra degenerate fields. We show that these two 4d theories with surface operators exhibit an IR duality, which reflects the known relation (the so-called separation of variables) between the conformal blocks of the WZW model and the Liouville theory. Furthermore, we trace this IR duality to a brane creation construction relating systems of M5 and M2 branes in M-theory. Finally, we show that this duality may be expressed as an explicit relation between the generating functions for the changes of variables between natural sets of Darboux coordinates on the Hitchin moduli space.
We pursue our study of the antiperiodic dynamical 6-vertex model using Sklyanins separation of variables approach, allowing in the model new possible global shifts of the dynamical parameter. We show in particular that the spectrum and eigenstates of the antiperiodic transfer matrix are completely characterized by a system of discrete equations. We prove the existence of different reformulations of this characterization in terms of functional equations of Baxters type. We notably consider the homogeneous functional $T$-$Q$ equation which is the continuous analog of the aforementioned discrete system and show, in the case of a model with an even number of sites, that the complete spectrum and eigenstates of the antiperiodic transfer matrix can equivalently be described in terms of a particular class of its $Q$-solutions, hence leading to a complete system of Bethe equations. Finally, we compute the form factors of local operators for which we obtain determinant representations in finite volume.
65 - N. Filonov 2020
The Maxwell operator in a 3D cylinder is considered. The coefficients are assumed to be scalar functions depending on the longitudinal variable only. Such operator is represented as a sum of countable set of matrix differential operators of first ord er acting in $L_2({mathbb R})$. Based on this representation we give a detailed description of the structure of the spectrum of the Maxwell operator in two particular cases: 1) in the case of coefficients stabilizing at infinity; and 2) in the case of periodic coefficients.
The definitions of para-Grassmann variables and q-oscillator algebras are recalled. Some new properties are given. We then introduce appropriate coherent states as well as their dual states. This allows us to obtain a formula for the trace of a opera tor expressed as a function of the creation and annihilation operators.
132 - Barak Gabai , Xi Yin 2021
In this paper we give a streamlined derivation of the exact quantization condition (EQC) on the quantum periods of the Schrodinger problem in one dimension with a general polynomial potential, based on Wronskian relations. We further generalize the E QC to potentials with a regular singularity, describing spherical symmetric quantum mechanical systems in a given angular momentum sector. We show that the thermodynamic Bethe ansatz (TBA) equations that govern the quantum periods undergo nontrivial monodromies as the angular momentum is analytically continued between integer values in the complex plane. The TBA equations together with the EQC are checked numerically against Hamiltonian truncation at real angular momenta and couplings, and are used to explore the analytic continuation of the spectrum on the complex angular momentum plane in examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا