ترغب بنشر مسار تعليمي؟ اضغط هنا

2D-FFTLog: Efficient computation of real space covariance matrices for galaxy clustering and weak lensing

153   0   0.0 ( 0 )
 نشر من قبل Xiao Fang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurate covariance matrices for two-point functions are critical for inferring cosmological parameters in likelihood analyses of large-scale structure surveys. Among various approaches to obtaining the covariance, analytic computation is much faster and less noisy than estimation from data or simulations. However, the transform of covariances from Fourier space to real space involves integrals with two Bessel integrals, which are numerically slow and easily affected by numerical uncertainties. Inaccurate covariances may lead to significant errors in the inference of the cosmological parameters. In this paper, we introduce a 2D-FFTLog algorithm for efficient, accurate and numerically stable computation of non-Gaussian real space covariances for both 3D and projected statistics. The 2D-FFTLog algorithm is easily extended to perform real space bin-averaging. We apply the algorithm to the covariances for galaxy clustering and weak lensing for a Dark Energy Survey Year 3-like and a Rubin Observatorys Legacy Survey of Space and Time Year 1-like survey, and demonstrate that for both surveys, our algorithm can produce numerically stable angular bin-averaged covariances with the flat sky approximation, which are sufficiently accurate for inferring cosmological parameters. The code CosmoCov for computing the real space covariances with or without the flat sky approximation is released along with this paper.



قيم البحث

اقرأ أيضاً

Angular two-point statistics of large-scale structure observables are important cosmological probes. To reach the high accuracy required by the statistical precision of future surveys, some of these statistics may need to be computed without the comm only employed Limber approximation; the exact computation however requires integration over Bessel functions, and a brute-force evaluation is slow to converge. We present a new method based on our generalized FFTLog algorithm for the efficient computation of angular power spectra beyond the Limber approximation. The new method significantly simplifies the calculation and improves the numerical speed and stability. It is easily extended to handle integrals involving derivatives of Bessel functions, making it equally applicable to numerically more challenging cases such as contributions from redshift-space distortions and Doppler effects. We implement our method for galaxy clustering and galaxy-galaxy lensing power spectra. We find that using the Limber approximation for galaxy clustering in future analyses like LSST Year 1 and DES Year 6 may cause significant biases in cosmological parameters, indicating that going beyond the Limber approximation is necessary for these analyses.
Upcoming weak lensing surveys will probe large fractions of the sky with unprecedented accuracy. To infer cosmological constraints, a large ensemble of survey simulations are required to accurately model cosmological observables and their covariances . We develop a parallelized multi-lens-plane pipeline called UFalcon, designed to generate full-sky weak lensing maps from lightcones within a minimal runtime. It makes use of L-PICOLA, an approximate numerical code, which provides a fast and accurate alternative to cosmological $N$-Body simulations. The UFalcon maps are constructed by nesting 2 simulations covering a redshift-range from $z=0.1$ to $1.5$ without replicating the simulation volume. We compute the convergence and projected overdensity maps for L-PICOLA in the lightcone or snapshot mode. The generation of such a map, including the L-PICOLA simulation, takes about 3 hours walltime on 220 cores. We use the maps to calculate the spherical harmonic power spectra, which we compare to theoretical predictions and to UFalcon results generated using the full $N$-Body code GADGET-2. We then compute the covariance matrix of the full-sky spherical harmonic power spectra using 150 UFalcon maps based on L-PICOLA in lightcone mode. We consider the PDF, the higher-order moments and the variance of the smoothed field variance to quantify the accuracy of the covariance matrix, which we find to be a few percent for scales $ell sim 10^2$ to $10^3$. We test the impact of this level of accuracy on cosmological constraints using an optimistic survey configuration, and find that the final results are robust to this level of uncertainty. The speed and accuracy of our developed pipeline provides a basis to also include further important features such as masking, varying noise and will allow us to compute covariance matrices for models beyond $Lambda$CDM. [abridged]
Measurements of the redshift-space galaxy clustering have been a prolific source of cosmological information in recent years. Accurate covariance estimates are an essential step for the validation of galaxy clustering models of the redshift-space two -point statistics. Usually, only a limited set of accurate N-body simulations is available. Thus, assessing the data covariance is not possible or only leads to a noisy estimate. Further, relying on simulated realisations of the survey data means that tests of the cosmology dependence of the covariance are expensive. With these points in mind, this work presents a simple theoretical model for the linear covariance of anisotropic galaxy clustering observations with synthetic catalogues. Considering the Legendre moments (`multipoles) of the two-point statistics and projections into wide bins of the line-of-sight parameter (`clustering wedges), we describe the modelling of the covariance for these anisotropic clustering measurements for galaxy samples with a trivial geometry in the case of a Gaussian approximation of the clustering likelihood. As main result of this paper, we give the explicit formulae for Fourier and configuration space covariance matrices. To validate our model, we create synthetic HOD galaxy catalogues by populating the haloes of an ensemble of large-volume N-body simulations. Using linear and non-linear input power spectra, we find very good agreement between the model predictions and the measurements on the synthetic catalogues in the quasi-linear regime.
102 - Keiichi Umetsu 2020
Weak gravitational lensing of background galaxies provides a direct probe of the projected matter distribution in and around galaxy clusters. Here we present a self-contained pedagogical review of cluster--galaxy weak lensing, covering a range of top ics relevant to its cosmological and astrophysical applications. We begin by reviewing the theoretical foundations of gravitational lensing from first principles, with special attention to the basics and advanced techniques of weak gravitational lensing. We summarize and discuss key findings from recent cluster--galaxy weak-lensing studies on both observational and theoretical grounds, with a focus on cluster mass profiles, the concentration--mass relation, the splashback radius, and implications from extensive mass calibration efforts for cluster cosmology.
We compare predictions for galaxy-galaxy lensing profiles and clustering from the Henriques et al. (2015) public version of the Munich semi-analytical model of galaxy formation (SAM) and the IllustrisTNG suite, primarily TNG300, with observations fro m KiDS+GAMA and SDSS-DR7 using four different selection functions for the lenses (stellar mass, stellar mass and group membership, stellar mass and isolation criteria, stellar mass and colour). We find that this version of the SAM does not agree well with the current data for stellar mass-only lenses with $M_ast > 10^{11},M_odot$. By decreasing the merger time for satellite galaxies as well as reducing the radio-mode AGN accretion efficiency in the SAM, we obtain better agreement, both for the lensing and the clustering, at the high mass end. We show that the new model is consistent with the signals for central galaxies presented in Velliscig et al. (2017). Turning to the hydrodynamical simulation, TNG300 produces good lensing predictions, both for stellar mass-only ($chi^2 = 1.81$ compared to $chi^2 = 7.79$ for the SAM), and locally brightest galaxies samples ($chi^2 = 3.80$ compared to $chi^2 = 5.01$). With added dust corrections to the colours it matches the SDSS clustering signal well for red low mass galaxies. We find that both the SAMs and TNG300 predict $sim 50,%$ excessive lensing signals for intermediate mass red galaxies with $10.2 < log_{10} M_ast [ M_odot ] < 11.2$ at $r approx 0.6,h^{-1},mathrm{Mpc}$, which require further theoretical development.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا