ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling law of transient lifetime of chimera states under dimension-augmenting perturbations

58   0   0.0 ( 0 )
 نشر من قبل Ying-Cheng Lai
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Chimera states arising in the classic Kuramoto system of two-dimensional phase coupled oscillators are transient but they are long transients in the sense that the average transient lifetime grows exponentially with the system size. For reasonably large systems, e.g., those consisting of a few hundreds oscillators, it is infeasible to numerically calculate or experimentally measure the average lifetime, so the chimera states are practically permanent. We find that small perturbations in the third dimension, which make system slightly three-dimensional, will reduce dramatically the transient lifetime. In particular, under such a perturbation, the practically infinite average transient lifetime will become extremely short, because it scales with the magnitude of the perturbation only logarithmically. Physically, this means that a reduction in the perturbation strength over many orders of magnitude, insofar as it is not zero, would result in only an incremental increase in the lifetime. The uncovered type of fragility of chimera states raises concerns about their observability in physical systems.



قيم البحث

اقرأ أيضاً

We investigate two types of chimera states, i.e., patterns consisting of coexisting spatially separated domains with coherent and incoherent dynamics, in ring networks of Stuart-Landau oscillators with symmetry-breaking coupling, under the influence of noise. Amplitude chimeras are characterized by temporally periodic dynamics throughout the whole network, but spatially incoherent behavior with respect to the amplitudes in a part of the system; they are long-living transients. Chimera death states generalize chimeras to stationary inhomogeneous patterns (oscillation death), which combine spatially coherent and incoherent domains. We analyze the impact of random perturbations, addressing the question of robustness of chimera states in the presence of white noise. We further consider the effect of symmetries applied to random initial conditions.
We study the dynamics of mobile, locally coupled identical oscillators in the presence of coupling delays. We find different kinds of chimera states, in which coherent in-phase and anti-phase domains coexist with incoherent domains. These chimera sta tes are dynamic and can persist for long times for intermediate mobility values. We discuss the mechanisms leading to the formation of these chimera states in different mobility regimes. This finding could be relevant for natural and technological systems composed of mobile communicating agents.
322 - Yusuke Suda , Koji Okuda 2019
Chimera states in one-dimensional nonlocally coupled phase oscillators are mostly assumed to be stationary, but breathing chimeras can occasionally appear, branching from the stationary chimeras via Hopf bifurcation. In this paper, we demonstrate two types of breathing chimeras: The type I breathing chimera looks the same as the stationary chimera at a glance, while the type II consists of multiple coherent regions with different average frequencies. Moreover, it is shown that the type I changes to the type II by increasing the breathing amplitude. Furthermore, we develop a self-consistent analysis of the local order parameter, which can be applied to breathing chimeras, and numerically demonstrate this analysis in the present system.
146 - Yusuke Suda , Koji Okuda 2015
Chimera states in the systems of nonlocally coupled phase oscillators are considered stable in the continuous limit of spatially distributed oscillators. However, it is reported that in the numerical simulations without taking such limit, chimera sta tes are chaotic transient and finally collapse into the completely synchronous solution. In this paper, we numerically study chimera states by using the coupling function different from the previous studies and obtain the result that chimera states can be stable even without taking the continuous limit, which we call the persistent chimera state.
In the present article, we demonstrate the emergence and existence of the spiral wave chimera-like transient pattern in coupled ecological systems, composed of prey-predator patches, where the patches are connected in a three-dimensional medium throu gh local diffusion. We explore the transition scenarios among the several collective dynamical behaviors together with transient spiral wave chimera-like states and investigate the long time behavior of these states. The transition from the transient spiral chimera-like pattern to the long time synchronized or desynchronized pattern appears through the deformation of the incoherent region of the spiral core. We discuss the transient dynamics under the influence of the species diffusion at different time instants. By calculating the instantaneous strength of incoherence of the populations, we estimate the duration of the transient dynamics characterized by the persistence of the chimera-like spatial coexistence of coherent and incoherent patterns over the spatial domain. We generalize our observations on the transient dynamics in three-dimensional grid of diffusive ecological systems by considering two different prey-predator systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا