ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Drive Off Road on Smooth Terrain in Unstructured Environments Using an On-Board Camera and Sparse Aerial Images

68   0   0.0 ( 0 )
 نشر من قبل Travis Manderson
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method for learning to drive on smooth terrain while simultaneously avoiding collisions in challenging off-road and unstructured outdoor environments using only visual inputs. Our approach applies a hybrid model-based and model-free reinforcement learning method that is entirely self-supervised in labeling terrain roughness and collisions using on-board sensors. Notably, we provide both first-person and overhead aerial image inputs to our model. We find that the fusion of these complementary inputs improves planning foresight and makes the model robust to visual obstructions. Our results show the ability to generalize to environments with plentiful vegetation, various types of rock, and sandy trails. During evaluation, our policy attained 90% smooth terrain traversal and reduced the proportion of rough terrain driven over by 6.1 times compared to a model using only first-person imagery.



قيم البحث

اقرأ أيضاً

Terrain adaptation is an essential capability for a ground robot to effectively traverse unstructured off-road terrain in real-world field environments such as forests. However, the expected robot behaviors generated by terrain adaptation methods can not always be executed accurately due to setbacks such as wheel slip and reduced tire pressure. To address this problem, we propose a novel approach for consistent behavior generation that enables the ground robots actual behaviors to more accurately match expected behaviors while adapting to a variety of unstructured off-road terrain. Our approach learns offset behaviors that are used to compensate for the inconsistency between the actual and expected behaviors without requiring the explicit modeling of various setbacks. Our approach is also able to estimate the importance of the multi-modal features to improve terrain representations for better adaptation. In addition, we develop an algorithmic solver for our formulated regularized optimization problem, which is guaranteed to converge to the global optimal solution. To evaluate the method, we perform extensive experiments using various unstructured off-road terrain in real-world field environments. Experimental results have validated that our approach enables robots to traverse complex unstructured off-road terrain with more navigational behavior consistency, and it outperforms previous methods, particularly so on challenging terrain.
The use of drones for aerial cinematography has revolutionized several applications and industries that require live and dynamic camera viewpoints such as entertainment, sports, and security. However, safely controlling a drone while filming a moving target usually requires multiple expert human operators; hence the need for an autonomous cinematographer. Current approaches have severe real-life limitations such as requiring fully scripted scenes, high-precision motion-capture systems or GPS tags to localize targets, and prior maps of the environment to avoid obstacles and plan for occlusion. In this work, we overcome such limitations and propose a complete system for aerial cinematography that combines: (1) a vision-based algorithm for target localization; (2) a real-time incremental 3D signed-distance map algorithm for occlusion and safety computation; and (3) a real-time camera motion planner that optimizes smoothness, collisions, occlusions and artistic guidelines. We evaluate robustness and real-time performance in series of field experiments and simulations by tracking dynamic targets moving through unknown, unstructured environments. Finally, we verify that despite removing previous limitations, our system achieves state-of-the-art performance. Videos of the system in action can be seen at https://youtu.be/ZE9MnCVmumc
We learn an interactive vision-based driving policy from pre-recorded driving logs via a model-based approach. A forward model of the world supervises a driving policy that predicts the outcome of any potential driving trajectory. To support learning from pre-recorded logs, we assume that the world is on rails, meaning neither the agent nor its actions influence the environment. This assumption greatly simplifies the learning problem, factorizing the dynamics into a nonreactive world model and a low-dimensional and compact forward model of the ego-vehicle. Our approach computes action-values for each training trajectory using a tabular dynamic-programming evaluation of the Bellman equations; these action-values in turn supervise the final vision-based driving policy. Despite the world-on-rails assumption, the final driving policy acts well in a dynamic and reactive world. At the time of writing, our method ranks first on the CARLA leaderboard, attaining a 25% higher driving score while using 40 times less data. Our method is also an order of magnitude more sample-efficient than state-of-the-art model-free reinforcement learning techniques on navigational tasks in the ProcGen benchmark.
We present a method for detecting and mapping trees in noisy stereo camera point clouds, using a learned 3-D object detector. Inspired by recent advancements in 3-D object detection using a pseudo-lidar representation for stereo data, we train a Poin tRCNN detector to recognize trees in forest-like environments. We generate detector training data with a novel automatic labeling process that clusters a fused global point cloud. This process annotates large stereo point cloud training data sets with minimal user supervision, and unlike previous pseudo-lidar detection pipelines, requires no 3-D ground truth from other sensors such as lidar. Our mapping system additionally uses a Kalman filter to associate detections and consistently estimate the positions and sizes of trees. We collect a data set for tree detection consisting of 8680 stereo point clouds, and validate our method on an outdoors test sequence. Our results demonstrate robust tree recognition in noisy stereo data at ranges of up to 7 meters, on 720p resolution images from a Stereolabs ZED 2 camera. Code and data are available at https://github.com/brian-h-wang/pseudolidar-tree-detection.
We present Terrain Traversability Mapping (TTM), a real-time mapping approach for terrain traversability estimation and path planning for autonomous excavators in an unstructured environment. We propose an efficient learning-based geometric method to extract terrain features from RGB images and 3D pointclouds and incorporate them into a global map for planning and navigation for autonomous excavation. Our method used the physical characteristics of the excavator, including maximum climbing degree and other machine specifications, to determine the traversable area. Our method can adapt to changing environments and update the terrain information in real-time. Moreover, we prepare a novel dataset, Autonomous Excavator Terrain (AET) dataset, consisting of RGB images from construction sites with seven categories according to navigability. We integrate our mapping approach with planning and control modules in an autonomous excavator navigation system, which outperforms previous method by 49.3% in terms of success rate based on existing planning schemes. With our mapping the excavator can navigate through unstructured environments consisting of deep pits, steep hills, rock piles, and other complex terrain features.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا