ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Ethics of Building AI in a Responsible Manner

161   0   0.0 ( 0 )
 نشر من قبل Shai Shalev-Shwartz
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The AI-alignment problem arises when there is a discrepancy between the goals that a human designer specifies to an AI learner and a potential catastrophic outcome that does not reflect what the human designer really wants. We argue that a formalism of AI alignment that does not distinguish between strategic and agnostic misalignments is not useful, as it deems all technology as un-safe. We propose a definition of a strategic-AI-alignment and prove that most machine learning algorithms that are being used in practice today do not suffer from the strategic-AI-alignment problem. However, without being careful, todays technology might lead to strategic misalignment.



قيم البحث

اقرأ أيضاً

113 - Liming Zhu , Xiwei Xu , Qinghua Lu 2021
In the last few years, AI continues demonstrating its positive impact on society while sometimes with ethically questionable consequences. Building and maintaining public trust in AI has been identified as the key to successful and sustainable innova tion. This chapter discusses the challenges related to operationalizing ethical AI principles and presents an integrated view that covers high-level ethical AI principles, the general notion of trust/trustworthiness, and product/process support in the context of responsible AI, which helps improve both trust and trustworthiness of AI for a wider set of stakeholders.
The history of science and technology shows that seemingly innocuous developments in scientific theories and research have enabled real-world applications with significant negative consequences for humanity. In order to ensure that the science and te chnology of AI is developed in a humane manner, we must develop research publication norms that are informed by our growing understanding of AIs potential threats and use cases. Unfortunately, its difficult to create a set of publication norms for responsible AI because the field of AI is currently fragmented in terms of how this technology is researched, developed, funded, etc. To examine this challenge and find solutions, the Montreal AI Ethics Institute (MAIEI) co-hosted two public consultations with the Partnership on AI in May 2020. These meetups examined potential publication norms for responsible AI, with the goal of creating a clear set of recommendations and ways forward for publishers. In its submission, MAIEI provides six initial recommendations, these include: 1) create tools to navigate publication decisions, 2) offer a page number extension, 3) develop a network of peers, 4) require broad impact statements, 5) require the publication of expected results, and 6) revamp the peer-review process. After considering potential concerns regarding these recommendations, including constraining innovation and creating a black market for AI research, MAIEI outlines three ways forward for publishers, these include: 1) state clearly and consistently the need for established norms, 2) coordinate and build trust as a community, and 3) change the approach.
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society. Across academia, industry, and government bodies, a variety of endeavours are being pursued towards enhancing AI ethics. A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests. These different perspectives are often not understood, due in part to communication gaps.For example, AI researchers who design and develop AI models are not necessarily aware of the instability induced in consumers lives by the compounded effects of AI decisions. Educating different stakeholders about their roles and responsibilities in the broader context becomes necessary. In this position paper, we outline some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools for surfacing different perspectives. We hope to spark interdisciplinary discussions about computational creativity broadly as a tool for enhancing AI ethics.
249 - Han Yu , Zhiqi Shen , Chunyan Miao 2018
As artificial intelligence (AI) systems become increasingly ubiquitous, the topic of AI governance for ethical decision-making by AI has captured public imagination. Within the AI research community, this topic remains less familiar to many researche rs. In this paper, we complement existing surveys, which largely focused on the psychological, social and legal discussions of the topic, with an analysis of recent advances in technical solutions for AI governance. By reviewing publications in leading AI conferences including AAAI, AAMAS, ECAI and IJCAI, we propose a taxonomy which divides the field into four areas: 1) exploring ethical dilemmas; 2) individual ethical decision frameworks; 3) collective ethical decision frameworks; and 4) ethics in human-AI interactions. We highlight the intuitions and key techniques used in each approach, and discuss promising future research directions towards successful integration of ethical AI systems into human societies.
In February 2020, the European Commission (EC) published a white paper entitled, On Artificial Intelligence - A European approach to excellence and trust. This paper outlines the ECs policy options for the promotion and adoption of artificial intelli gence (AI) in the European Union. The Montreal AI Ethics Institute (MAIEI) reviewed this paper and published a response addressing the ECs plans to build an ecosystem of excellence and an ecosystem of trust, as well as the safety and liability implications of AI, the internet of things (IoT), and robotics. MAIEI provides 15 recommendations in relation to the sections outlined above, including: 1) focus efforts on the research and innovation community, member states, and the private sector; 2) create alignment between trading partners policies and EU policies; 3) analyze the gaps in the ecosystem between theoretical frameworks and approaches to building trustworthy AI; 4) focus on coordination and policy alignment; 5) focus on mechanisms that promote private and secure sharing of data; 6) create a network of AI research excellence centres to strengthen the research and innovation community; 7) promote knowledge transfer and develop AI expertise through Digital Innovation Hubs; 8) add nuance to the discussion regarding the opacity of AI systems; 9) create a process for individuals to appeal an AI systems decision or output; 10) implement new rules and strengthen existing regulations; 11) ban the use of facial recognition technology; 12) hold all AI systems to similar standards and compulsory requirements; 13) ensure biometric identification systems fulfill the purpose for which they are implemented; 14) implement a voluntary labelling system for systems that are not considered high-risk; 15) appoint individuals to the oversight process who understand AI systems well and are able to communicate potential risks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا