ﻻ يوجد ملخص باللغة العربية
This technical report describes a dynamic causal model of the spread of coronavirus through a population. The model is based upon ensemble or population dynamics that generate outcomes, like new cases and deaths over time. The purpose of this model is to quantify the uncertainty that attends predictions of relevant outcomes. By assuming suitable conditional dependencies, one can model the effects of interventions (e.g., social distancing) and differences among populations (e.g., herd immunity) to predict what might happen in different circumstances. Technically, this model leverages state-of-the-art variational (Bayesian) model inversion and comparison procedures, originally developed to characterise the responses of neuronal ensembles to perturbations. Here, this modelling is applied to epidemiological populations to illustrate the kind of inferences that are supported and how the model per se can be optimised given timeseries data. Although the purpose of this paper is to describe a modelling protocol, the results illustrate some interesting perspectives on the current pandemic; for example, the nonlinear effects of herd immunity that speak to a self-organised mitigation process.
This technical report addresses a pressing issue in the trajectory of the coronavirus outbreak; namely, the rate at which effective immunity is lost following the first wave of the pandemic. This is a crucial epidemiological parameter that speaks to
We recently described a dynamic causal model of a COVID-19 outbreak within a single region. Here, we combine several of these (epidemic) models to create a (pandemic) model of viral spread among regions. Our focus is on a second wave of new cases tha
One of the key indicators used in tracking the evolution of an infectious disease isthe reproduction number. This quantity is usually computed using the reportednumber of cases, but ignoring that many more individuals may be infected (e.g.asymptomati
The COVID-19 has caused more than three million infections and over two hundred thousand deaths by April 20201. Limiting socioeconomic activities (SA) is among the most adopted governmental mitigating efforts to combat the transmission of the virus,
By characterising the time evolution of COVID-19 in term of its velocity (log of the new cases per day) and its rate of variation, or acceleration, we show that in many countries there has been a deceleration even before lockdowns were issued. This f