ترغب بنشر مسار تعليمي؟ اضغط هنا

Transition from clogging to continuous flow in constricted particle suspensions

80   0   0.0 ( 0 )
 نشر من قبل Alvaro Marin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When suspended particles are pushed by liquid flow through a constricted channel they might either pass the bottleneck without trouble or encounter a permanent clog that will stop them forever. However, they may also flow intermittently with great sensitivity to the neck-to-particle size ratio D/d. In this work, we experimentally explore the limits of the intermittent regime for a dense suspension through a single bottleneck as a function of this parameter. To this end, we make use of high time- and space-resolution experiments to obtain the distributions of arrest times T between successive bursts, which display power-law tails with characteristic exponents. These exponents compare well with the ones found for as disparate situations as the evacuation of pedestrians from a room, the entry of a flock of sheep into a shed or the discharge of particles from a silo. Nevertheless, the intrinsic properties of our system i.e. channel geometry, driving and interaction forces, particle size distribution seem to introduce a sharp transition from a clogged state to a continuous flow, where clogs do not develop at all. This contrasts with the results obtained in other systems where intermittent flow, with power-law exponents above two, were obtained.



قيم البحث

اقرأ أيضاً

Janus phoretic colloids (JPs) self-propel as a result of self-generated chemical gradients and exhibit spontaneous nontrivial dynamics within phoretic suspensions, on length scales much larger than the microscopic swimmer size. Such collective dynami cs arise from the competition of (i) the self-propulsion velocity of the particles, (ii) the attractive/repulsive chemically-mediated interactions between particles and (iii) the flow disturbance they introduce in the surrounding medium. These three ingredients are directly determined by the shape and physico-chemical properties of the colloids surface. Owing to such link, we adapt a recent and popular kinetic model for dilute suspensions of chemically-active JPs where the particles far-field hydrodynamic and chemical signatures are intrinsically linked and explicitly determined by the design properties. Using linear stability analysis, we show that self-propulsion can induce a wave-selective mechanism for certain particles configurations consistent with experimental observations. Numerical simulations of the complete kinetic model are further performed to analyze the relative importance of chemical and hydrodynamic interactions in the nonlinear dynamics. Our results show that regular patterns in the particle density are promoted by chemical signaling but prevented by the strong fluid flows generated collectively by the polarized particles, regardless of their chemotactic or antichemotactic nature (i.e. for both puller and pusher swimmers).
We examine the onset of turbulence in Waleffe flow -- the planar shear flow between stress-free boundaries driven by a sinusoidal body force. By truncating the wall-normal representation to four modes, we are able to simulate system sizes an order of magnitude larger than any previously simulated, and thereby to attack the question of universality for a planar shear flow. We demonstrate that the equilibrium turbulence fraction increases continuously from zero above a critical Reynolds number and that statistics of the turbulent structures exhibit the power-law scalings of the (2+1)-D directed percolation universality class.
We present guidelines to estimate the effect of electrostatic repulsion in sedimenting dilute particle suspensions. Our results are based on combined Langevin dynamics and lattice Boltzmann simulations for a range of particle radii, Debye lengths and particle concentrations. They show a simple relationship between the slope $K$ of the sedimentation velocity over the concentration versus the range $chi$ of the electrostatic repulsion normalized by the average particle-particle distance. When $chi to 0$, the particles are too far away from each other to interact electrostatically and $K=6.55$ as predicted by the theory of Batchelor. As $chi$ increases, $K$ likewise increases up to a maximum around $chi=0.5$ and then decreases again to a concentration-dependent constant over the range $chi=0.5-1$, while the particles transition from a disordered gas-like distribution to a liquid-like state with a narrow distribution of the interparticle spacing.
In a shear flow particles migrate to their equilibrium positions in the microchannel. Here we demonstrate theoretically that if particles are inertial, this equilibrium can become unstable due to the Saffman lift force. We derive an expression for th e critical Stokes number that determines the onset of instable equilibrium. We also present results of lattice Boltzmann simulations for spherical particles and prolate spheroids to validate the analysis. Our work provides a simple explanation of several unusual phenomena observed in earlier experiments and computer simulations, but never interpreted before in terms of the unstable equilibrium.
To understand the behavior of composite fluid particles such as nucleated cells and double-emulsions in flow, we study a finite-size particle encapsulated in a deforming droplet under shear flow as a model system. In addition to its concentric partic le-droplet configuration, we numerically explore other eccentric and time-periodic equilibrium solutions, which emerge spontaneously via supercritical pitchfork and Hopf bifurcations. We present the loci of these solutions around the codimenstion-two point. We adopt a dynamical system approach to model and characterize the coupled behavior of the two bifurcations. By exploring the flow fields and hydrodynamic forces in detail, we identify the role of hydrodynamic particle-droplet interaction which gives rise to these bifurcations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا