ﻻ يوجد ملخص باللغة العربية
The usual Chern-Simons extension of Einstein gravity theory consists in adding a squared Riemann contribution to the Hilbert Lagrangian, which means that a square-curvature term is added to the linear-curvature leading term governing the dynamics of the gravitational field. However, in such a way the Lagrangian consists of two terms with a different number of curvatures, and therefore not homogeneous. To develop a homogeneous Chern-Simons correction to Einstein gravity we may, on the one hand, use the above-mentioned square-curvature contribution as the correction for the most general square-curvature Lagrangian, or on the other hand, find some linear-curvature correction to the Hilbert Lagrangian. In the first case, we will present the most general square-curvature leading term, which is in fact the already-known re-normalizable Stelle Lagrangian. In the second case, the topological current has to be an axial-vector built only in terms of gravitational degrees of freedom and with a unitary mass dimension, and we will display such an object. The comparison of the two theories will eventually be commented.
Teleparallel gravity is a modified theory of gravity in which the Ricci scalar $R$ of the Lagrangian replaced by the general function of torsion scalar $T$ in action. With that, cosmology in teleparallel gravity becomes profoundly simplified because
To ensure the existence of a well defined linearized gravitational wave equation, we show that the spacetimes in the so-called Einstein-Gauss-Bonnet gravity in four dimension have to be locally conformally flat.
We show that the mathematical proof of the four color theorem yields a perfect interpretation of the Standard Model of particle physics. The steps of the proof enable us to construct the t-Riemann surface and particle frame which forms the gauge. We
In this paper we proceed into the next step of formalization of a consistent dual theory for mass dimension one spinors. This task is developed approaching the two different and complementary aspects of such duals, clarifying its algebraic structure
De Sitter Chern-Simons gravity in D = 1 + 2 spacetime is known to possess an extension with a Barbero-Immirzi like parameter. We find a partial gauge fixing which leaves a compact residual gauge group, namely SU(2). The compacticity of the residual g