ترغب بنشر مسار تعليمي؟ اضغط هنا

DynaBERT: Dynamic BERT with Adaptive Width and Depth

145   0   0.0 ( 0 )
 نشر من قبل Lu Hou
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The pre-trained language models like BERT, though powerful in many natural language processing tasks, are both computation and memory expensive. To alleviate this problem, one approach is to compress them for specific tasks before deployment. However, recent works on BERT compression usually compress the large BERT model to a fixed smaller size. They can not fully satisfy the requirements of different edge devices with various hardware performances. In this paper, we propose a novel dynamic BERT model (abbreviated as DynaBERT), which can flexibly adjust the size and latency by selecting adaptive width and depth. The training process of DynaBERT includes first training a width-adaptive BERT and then allowing both adaptive width and depth, by distilling knowledge from the full-sized model to small sub-networks. Network rewiring is also used to keep the more important attention heads and neurons shared by more sub-networks. Comprehensive experiments under various efficiency constraints demonstrate that our proposed dynamic BERT (or RoBERTa) at its largest size has comparable performance as BERT-base (or RoBERTa-base), while at smaller widths and depths consistently outperforms existing BERT compression methods. Code is available at https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/DynaBERT.



قيم البحث

اقرأ أيضاً

261 - Jin Xu , Xu Tan , Renqian Luo 2021
While pre-trained language models (e.g., BERT) have achieved impressive results on different natural language processing tasks, they have large numbers of parameters and suffer from big computational and memory costs, which make them difficult for re al-world deployment. Therefore, model compression is necessary to reduce the computation and memory cost of pre-trained models. In this work, we aim to compress BERT and address the following two challenging practical issues: (1) The compression algorithm should be able to output multiple compressed models with different sizes and latencies, in order to support devices with different memory and latency limitations; (2) The algorithm should be downstream task agnostic, so that the compressed models are generally applicable for different downstream tasks. We leverage techniques in neural architecture search (NAS) and propose NAS-BERT, an efficient method for BERT compression. NAS-BERT trains a big supernet on a search space containing a variety of architectures and outputs multiple compressed models with adaptive sizes and latency. Furthermore, the training of NAS-BERT is conducted on standard self-supervised pre-training tasks (e.g., masked language model) and does not depend on specific downstream tasks. Thus, the compressed models can be used across various downstream tasks. The technical challenge of NAS-BERT is that training a big supernet on the pre-training task is extremely costly. We employ several techniques including block-wise search, search space pruning, and performance approximation to improve search efficiency and accuracy. Extensive experiments on GLUE and SQuAD benchmark datasets demonstrate that NAS-BERT can find lightweight models with better accuracy than previous approaches, and can be directly applied to different downstream tasks with adaptive model sizes for different requirements of memory or latency.
Existing pre-trained language models (PLMs) are often computationally expensive in inference, making them impractical in various resource-limited real-world applications. To address this issue, we propose a dynamic token reduction approach to acceler ate PLMs inference, named TR-BERT, which could flexibly adapt the layer number of each token in inference to avoid redundant calculation. Specially, TR-BERT formulates the token reduction process as a multi-step token selection problem and automatically learns the selection strategy via reinforcement learning. The experimental results on several downstream NLP tasks show that TR-BERT is able to speed up BERT by 2-5 times to satisfy various performance demands. Moreover, TR-BERT can also achieve better performance with less computation in a suite of long-text tasks since its token-level layer number adaption greatly accelerates the self-attention operation in PLMs. The source code and experiment details of this paper can be obtained from https://github.com/thunlp/TR-BERT.
139 - Weijie Liu , Peng Zhou , Zhe Zhao 2020
Pre-trained language models like BERT have proven to be highly performant. However, they are often computationally expensive in many practical scenarios, for such heavy models can hardly be readily implemented with limited resources. To improve their efficiency with an assured model performance, we propose a novel speed-tunable FastBERT with adaptive inference time. The speed at inference can be flexibly adjusted under varying demands, while redundant calculation of samples is avoided. Moreover, this model adopts a unique self-distillation mechanism at fine-tuning, further enabling a greater computational efficacy with minimal loss in performance. Our model achieves promising results in twelve English and Chinese datasets. It is able to speed up by a wide range from 1 to 12 times than BERT if given different speedup thresholds to make a speed-performance tradeoff.
Depth-adaptive neural networks can dynamically adjust depths according to the hardness of input words, and thus improve efficiency. The main challenge is how to measure such hardness and decide the required depths (i.e., layers) to conduct. Previous works generally build a halting unit to decide whether the computation should continue or stop at each layer. As there is no specific supervision of depth selection, the halting unit may be under-optimized and inaccurate, which results in suboptimal and unstable performance when modeling sentences. In this paper, we get rid of the halting unit and estimate the required depths in advance, which yields a faster depth-adaptive model. Specifically, two approaches are proposed to explicitly measure the hardness of input words and estimate corresponding adaptive depth, namely 1) mutual information (MI) based estimation and 2) reconstruction loss based estimation. We conduct experiments on the text classification task with 24 datasets in various sizes and domains. Results confirm that our approaches can speed up the vanilla Transformer (up to 7x) while preserving high accuracy. Moreover, efficiency and robustness are significantly improved when compared with other depth-adaptive approaches.
One of the most popular paradigms of applying large, pre-trained NLP models such as BERT is to fine-tune it on a smaller dataset. However, one challenge remains as the fine-tuned model often overfits on smaller datasets. A symptom of this phenomenon is that irrelevant words in the sentences, even when they are obvious to humans, can substantially degrade the performance of these fine-tuned BERT models. In this paper, we propose a novel technique, called Self-Supervised Attention (SSA) to help facilitate this generalization challenge. Specifically, SSA automatically generates weak, token-level attention labels iteratively by probing the fine-tuned model from the previous iteration. We investigate two different ways of integrating SSA into BERT and propose a hybrid approach to combine their benefits. Empirically, on a variety of public datasets, we illustrate significant performance improvement using our SSA-enhanced BERT model.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا