ﻻ يوجد ملخص باللغة العربية
The High Resolution Energetic X-Ray Imager (HREXI) CZT detector development program at Harvard is aimed at developing tiled arrays of finely pixelated CZT detectors for use in wide-field coded aperture 3-200 keV X-ray telescopes. A pixel size of $simeq$ 600 $mu m$ has already been achieved in the ProtoEXIST2 (P2) detector plane with CZT read out by the NuSTAR ASIC. This paves the way for even smaller 300 $mu m$ pixels in the next generation HREXI detectors. This article describes a new HREXI calibration facility (HCF) which enables a high resolution sub-pixel level (100 $mu m$) 2D scan of a 256 $cm^2$ tiled array of 2 $times$ 2 cm CZT detectors illuminated by a bright X-ray AmpTek Mini-X tube source at timescales of around a day. HCF is a significant improvement from the previous apparatus used for scanning these detectors which took $simeq$ 3 weeks to complete a 1D scan of a similar detector plane. Moreover, HCF has the capability to scan a large tiled array of CZT detectors ($32cm times 32cm$) at 100 $mu m$ resolution in the 10 - 50 keV energy range which was not possible previously. This paper describes the design, construction, and implementation of HCF for the calibration of the P2 detector plane.
AstroSat is Indias first space-based astronomical observatory, launched on September 28, 2015. One of the payloads aboard AstroSat is the Cadmium Zinc Telluride Imager (CZTI), operating at hard X-rays. CZTI employs a two-dimensional coded aperture ma
We are currently developing Cadmium Zinc Telluride (CZT) detectors for a next-generation space-borne hard X-ray telescope which can follow up on the highly successful NuSTAR (Nuclear Spectroscopic Telescope Array) mission. Since the launch of NuSTAR
We have been developing event-driven SOI Pixel Detectors, named `XRPIX (X-Ray soiPIXel) based on the silicon-on-insulator (SOI) pixel technology, for the future X-ray astronomical satellite with wide band coverage from 0.5 keV to 40 keV. XRPIX has ev
The AstroSat satellite is designed to make multi-waveband observations of astronomical sources and the Cadmium Zinc Telluride Imager (CZTI) instrument of AstroSat covers the hard X-ray band. CZTI has a large area position sensitive hard X-ray detecto
X-ray calorimeters routinely achieve very high spectral resolution, typically a few eV full width at half maximum (FWHM). Measurements of calorimeter line shapes are usually dominated by the natural linewidth of most laboratory calibration sources. T