ﻻ يوجد ملخص باللغة العربية
Motivated by a longstanding conjecture of Thomassen, we study how large the average degree of a graph needs to be to imply that it contains a $C_4$-free subgraph with average degree at least $t$. Kuhn and Osthus showed that an average degree bound which is double exponential in t is sufficient. We give a short proof of this bound, before reducing it to a single exponential. That is, we show that any graph $G$ with average degree at least $2^{ct^2log t}$ (for some constant $c>0$) contains a $C_4$-free subgraph with average degree at least $t$. Finally, we give a construction which improves the lower bound for this problem, showing that this initial average degree must be at least $t^{3-o(1)}$.
Answering some questions of Gutman, we show that, except for four specific trees, every connected graph G of order n, with no cycle of order 4 and with maximum degree at most 3, has energy greater that its order. Here, the energy of a graph is the su
A rainbow matching in an edge-colored graph is a matching in which no two edges have the same color. The color degree of a vertex v is the number of different colors on edges incident to v. Kritschgau [Electron. J. Combin. 27(2020)] studied the exist
A hereditary class of graphs $mathcal{G}$ is emph{$chi$-bounded} if there exists a function $f$ such that every graph $G in mathcal{G}$ satisfies $chi(G) leq f(omega(G))$, where $chi(G)$ and $omega(G)$ are the chromatic number and the clique number o
We extend the classical stability theorem of Erdos and Simonovits for forbidden graphs of logarithmic order.
In 1994, ErdH{o}s, Gy{a}rf{a}s and {L}uczak posed the following problem: given disjoint vertex sets $V_1,dots,V_n$ of size~$k$, with exactly one edge between any pair $V_i,V_j$, how large can $n$ be such that there will always be an independent trans