A challenge of modern physics is to investigate the quantum behavior of a bulk material object, for instance a mechanical oscillator. We have earlier demonstrated that by coupling a mechanical oscillator to the energy levels of embedded rare-earth ion dopants, it is possible to prepare such a resonator in a low phonon number state. Here, we describe how to extend this protocol in order to prepare momentum- and position squeezed states, and we analyze how the obtainable degree of squeezing depends on the initial conditions and on the coupling of the oscillator to its thermal environment.