ﻻ يوجد ملخص باللغة العربية
We present chemical abundances of red giant branch (RGB) stars in the dwarf spheroidal (dSph) satellite system of Andromeda (M31), using spectral synthesis of medium resolution (R $sim 6000$) spectra obtained with the Keck II telescope and DEIMOS spectrograph via the Spectroscopic and Photometric Landscape of Andromedas Stellar Halo (SPLASH) survey. We coadd stars according to their similarity in photometric metallicity or effective temperature to obtain a signal-to-noise ratio (S/N) high enough to measure average [Fe/H] and [$alpha$/Fe] abundances. We validate our method using high S/N spectra of RGB stars in Milky Way globular clusters as well as deep observations for a subset of the M31 dSphs in our sample. For this set of validation coadds, we compare the weighted average abundance of the individual stars with the abundance determined from the coadd. We present individual and coadded measurements of [Fe/H] and [$alpha$/Fe] for stars in ten M31 dSphs, including the first [$alpha$/Fe] measurements for And IX, XIV, XV, and XVIII. These fainter, less massive dSphs show declining [$alpha$/Fe] relative to [Fe/H], implying an extended star formation history. In addition, these dSphs also follow the same mass-metallicity relation found in other Local Group satellites. The conclusions we infer from coadded spectra agree with those from previous measurements in brighter M31 dSphs with individual abundance measurements, as well as conclusions from photometric studies. These abundances greatly increase the number of spectroscopic measurements of the chemical composition of M31s less massive dwarf satellites, which are crucial to understanding their star formation history and interaction with the M31 system.
We present [Fe/H] and [$alpha$/Fe] abundances, derived using spectral synthesis techniques, for stars in M31s outer stellar halo. The 21 [Fe/H] measurements and 7 [$alpha$/Fe] measurements are drawn from fields ranging from 43 to 165 kpc in projected
We present deep spectroscopy from Keck/DEIMOS of Andromeda I, III, V, VII, and X, all of which are dwarf spheroidal satellites of M31. The sample includes 256 spectroscopic members across all five dSphs. We confirm previous measurements of the veloci
We present the first measurements of [Fe/H] and [$alpha$/Fe] abundances, obtained using spectral synthesis modeling, for red giant branch stars in M31s giant stellar stream. The spectroscopic observations, obtained at a projected distance of 17 kpc f
We measured [Fe/H] and [$alpha$/Fe] using spectral synthesis of low-resolution stellar spectroscopy for 70 individual red giant branch stars across four fields spanning the outer disk, Giant Stellar Stream (GSS), and inner halo of M31. Fields at M31-
We analyze existing measurements of [Fe/H] and [$alpha$/Fe] for individual red giant branch (RGB) stars in the Giant Stellar Stream (GSS) of M31 to determine whether spatial abundance gradients are present. These measurements were obtained from low-