ترغب بنشر مسار تعليمي؟ اضغط هنا

Tensor and pairing interactions within the QMC energy density functional

68   0   0.0 ( 0 )
 نشر من قبل Kay Marie Martinez
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the latest version of the QMC model, QMC$pi$-III-T, the density functional is improved to include the tensor component quadratic in the spin-current and a pairing interaction derived in the QMC framework. Traditional pairing strengths are expressed in terms of the QMC parameters and the parameters of the model optimised. A variety of nuclear observables are calculated with the final set of parameters. The inclusion of the tensor component improves the predictions for ground-state bulk properties, while it has a small effect on the single-particle spectra. Further, its effect on the deformation of selected nuclei is found to improve the energies of doubly-magic nuclei at sphericity. Changes in the energy curves along the Zr chain with increasing deformation are investigated in detail. The new pairing functional is also applied to the study of neutron shell gaps, where it leads to improved predictions for subshell closures in the superheavy region.



قيم البحث

اقرأ أيضاً

117 - M. Bender , T. Duguet , D. Lacroix 2009
We give a detailed analysis of the origin of spurious divergences and finite steps that have been recently identified in particle-number restoration calculations within the nuclear energy density functional framework. We isolate two distinct levels o f spurious contributions to the energy. The first one is encoded in the definition of the basic energy density functional itself whereas the second one relates to the canonical procedure followed to extend the use of the energy density functional to multi-reference calculations. The first level of spuriosity relates to the long-known self-interaction problem and to the newly discussed self-pairing interaction process which might appear when describing paired systems with energy functional methods using auxiliary reference states of Bogoliubov or BCS type. A minimal correction to the second level of spuriosity to the multi-reference nuclear energy density functional proposed in [D. Lacroix, T. Duguet, M. Bender, arXiv:0809.2041] is shown to remove completely the anomalies encountered in particle-number restored calculations. In particular, it restores sum-rules over (positive) particle numbers that are to be fulfilled by the particle-number-restored formalism. The correction is found to be on the order of several hundreds of keVs up to about 1 MeV in realistic calculations, which is small compared to the total binding energy, but often accounts for a substantial percentage of the energy gain from particle-number restoration and is on the same energy scale as the excitations one addresses with multi-reference energy density functional methods.
67 - J. M. Dong , X. L. Shang 2020
The tensor force, as an important component of strong nuclear force, generates a variety of intriguing effects ranging from few-body systems to neutron stars. It is responsible for the nucleon-nucleon correlation beyond mean-field approximation, and is accordingly proved to play no role in the standard Skyrme energy density functionals in the present work. Therefore, the Skyrmes original tensor interaction that is extensively-employed presently is invalid. As an alternative strategy, we introduced a central interaction, i.e., the $bm{sigma }_{1}cdot bm{sigma }_{2}$ term, to improve the description of experimental single-particle structure, and to address its effect, we established two Skyrme interactions IMP1 and IMP2 complemented by the calibrated charge-violating interactions. The central $bm{sigma }_{1}cdot bm{sigma }_{2}$ interaction turns out to substantially improve the description of shell evolution in Sn isotopes and $N=82$ isotones.
In this work the low density regions of nuclear and neutron star matter are studied. The search for the existence of pasta phases in this region is performed within the context of the quark-meson coupling (QMC) model, which incorporates quark degrees of freedom. Fixed proton fractions are considered, as well as nuclear matter in beta equilibrium at zero temperature. We discuss the recent attempts to better understand the surface energy in the coexistence phases regime and we present results that show the existence of the pasta phases subject to some choices of the surface energy coefficient. We also analyze the influence of the nuclear pasta on some neutron star properties. The equation of state containing the pasta phase will be part of a complete grid for future use in supernova simulations.
279 - T. Lesinski 2007
We perform a systematic study of the impact of the J^2 tensor term in the Skyrme energy functional on properties of spherical nuclei. In the Skyrme energy functional, the tensor terms originate both from zero-range central and tensor forces. We build a set of 36 parameterizations, which covers a wide range of the parameter space of the isoscalar and isovector tensor term coupling constants, with a fit protocol very similar to that of the successful SLy parameterizations. We analyze the impact of the tensor terms on a large variety of observables in spherical mean-field calculations, such as the spin-orbit splittings and single-particle spectra of doubly-magic nuclei, the evolution of spin-orbit splittings along chains of semi-magic nuclei, mass residuals of spherical nuclei, and known anomalies of charge radii. Our main conclusion is that the currently used central and spin-orbit parts of the Skyrme energy density functional are not flexible enough to allow for the presence of large tensor terms.
212 - H. Sagawa , G. Col`o , Ligang Cao 2020
In a recent paper [Phys. Rev. C 101, 014305 (2020)], Dong and Shang claim that the Skyrme original tensor interaction is invalid. Their conclusion is based on the misconception that the Fourier transform of tensor interaction is difficult or even imp ossible, so that the Skrme-type tensor interaction was introduced in an unreasonable way. We disagree on their claim. In this note, we show that one can easily get the Skyrme force in momentum space by Fourier transformation if one starts from a general central, spin-orbit or tensor interaction with a radial dependence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا