ﻻ يوجد ملخص باللغة العربية
We investigate top quark pair production near the threshold where the pair invariant mass $M_{tbar{t}}$ approaches $2m_t$, which provides sensitive observables to extract the top quark mass $m_t$. Using the effective field theory methods, we derive a factorization and resummation formula for kinematic distributions in the threshold limit up to the next-to-leading power, which resums higher order Coulomb corrections to all orders in the strong coupling constant. Our formula is similar to those in the literature but differs in several important aspects. We apply our formula to the $M_{tbar{t}}$ distribution, as well as to the double differential cross section with respect to $M_{tbar{t}}$ and the rapidity of the $tbar{t}$ pair. We find that the resummation effects significantly increase the cross sections near the threshold, and lead to predictions better compatible with experimental data than the fixed-order ones. We demonstrate that incorporating resummation effects in the top quark mass determination can shift the extracted value of $m_t$ by as large as 1.4 GeV. The shift is much larger than the estimated uncertainties in previous experimental studies, and leads to a value of the top quark pole mass more consistent with the current world average.
We compute the total top-quark pair production cross section at the Tevatron and LHC based on approximate NNLO results, and on the summation of threshold logarithms and Coulomb enhancements to all orders with next-to-next-to-leading logarithmic (NNLL
We present new results on the NNNLO top-antitop production cross section near threshold from potential and ultrasoft gluon corrections. The new non-logarithmic third-order terms are in the 10% range and lead to a significant reduction in the theoretical error.
We perform a dedicated study of the four-fermion production process e- e+ -> mu- nubar_mu u dbar X near the W pair-production threshold in view of the importance of this process for a precise measurement of the W boson mass. Accurate theoretical pred
The status of theoretical predictions for top-quark pair production at hadron colliders is reviewed, focusing on the total cross section, differential distributions, and the description of top-quark production and decay including off-shell effects.
We compute the third-order correction to the heavy-quark current correlation function due to the emission and absorption of an ultrasoft gluon. Our result supplies a missing contribution to top-quark pair production near threshold and the determination of the bottom quark mass from QCD sum rules.