ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Fuzzy Control for Fractional-Order Interconnected Systems with Unknown Control Directions

99   0   0.0 ( 0 )
 نشر من قبل Shiqi Zheng
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper concentrates on the study of the decentralized fuzzy control method for a class of fractional-order interconnected systems with unknown control directions. To overcome the difficulties caused by the multiple unknown control directions in fractional-order systems, a novel fractional-order Nussbaum function technique is proposed. This technique is much more general than those of existing works since it not only handles single/multiple unknown control directions but is also suitable for fractional/integer-order single/interconnected systems. Based on this technique, a new decentralized adaptive control method is proposed for fractional-order interconnected systems. Smooth functions are introduced to compensate for unknown interactions among subsystems adaptively. Furthermore, fuzzy logic systems are utilized to approximate unknown nonlinearities. It is proven that the designed controller can guarantee the boundedness of all signals in interconnected systems and the convergence of tracking errors. Two examples are given to show the validity of the proposed method.



قيم البحث

اقرأ أيضاً

The cooperative control applied to vehicles allows the optimization of traffic on the roads. There are many aspects to consider in the case of the operation of autonomous vehicles on highways since there are different external parameters that can be involved in the analysis of a network. In this paper, we present the design and simulation of adaptive control for a platoon with heterogeneous vehicles, taking into account that not all vehicles can communicate their control input, and in turn include structured nonlinear uncertainty input parameters.
We present a method for incremental modeling and time-varying control of unknown nonlinear systems. The method combines elements of evolving intelligence, granular machine learning, and multi-variable control. We propose a State-Space Fuzzy-set-Based evolving Modeling (SS-FBeM) approach. The resulting fuzzy model is structurally and parametrically developed from a data stream with focus on memory and data coverage. The fuzzy controller also evolves, based on the data instances and fuzzy model parameters. Its local gains are redesigned in real-time -- whenever the corresponding local fuzzy models change -- from the solution of a linear matrix inequality problem derived from a fuzzy Lyapunov function and bounded input conditions. We have shown one-step prediction and asymptotic stabilization of the Henon chaos.
205 - Yutao Tang 2020
This paper studies an optimal consensus problem for a group of heterogeneous high-order agents with unknown control directions. Compared with existing consensus results, the consensus point is further required to an optimal solution to some distribut ed optimization problem. To solve this problem, we first augment each agent with an optimal signal generator to reproduce the global optimal point of the given distributed optimization problem, and then complete the global optimal consensus design by developing some adaptive tracking controllers for these augmented agents. Moreover, we present an extension when only real-time gradients are available. The trajectories of all agents in both cases are shown to be well-defined and achieve the expected consensus on the optimal point. Two numerical examples are given to verify the efficacy of our algorithms.
131 - Tongjia Zheng , Qing Han , Hai Lin 2021
Swarm robotic systems have foreseeable applications in the near future. Recently, there has been an increasing amount of literature that employs mean-field partial differential equations (PDEs) to model the time-evolution of the probability density o f swarm robotic systems and uses mean-field feedback to design stable control laws that act on individuals such that their density converges to a target profile. However, it remains largely unexplored considering problems of how to estimate the mean-field density, how the density estimation algorithms affect the control performance, and whether the estimation performance in turn depends on the control algorithms. In this work, we focus on studying the interplay of these algorithms. Specially, we propose new mean-field control laws which use the real-time density and its gradient as feedback, and prove that they are globally input-to-state stable (ISS) to estimation errors. Then, we design filtering algorithms to obtain estimates of the density and its gradient, and prove that these estimates are convergent assuming the control laws are known. Finally, we show that the feedback interconnection of these estimation and control algorithms is still globally ISS, which is attributed to the bilinearity of the mean-field PDE system. An agent-based simulation is included to verify the stability of these algorithms and their feedback interconnection.
We consider the problem of stabilization of a linear system, under state and control constraints, and subject to bounded disturbances and unknown parameters in the state matrix. First, using a simple least square solution and available noisy measurem ents, the set of admissible values for parameters is evaluated. Second, for the estimated set of parameter values and the corresponding linear interval model of the system, two interval predictors are recalled and an unconstrained stabilizing control is designed that uses the predicted intervals. Third, to guarantee the robust constraint satisfaction, a model predictive control algorithm is developed, which is based on solution of an optimization problem posed for the interval predictor. The conditions for recursive feasibility and asymptotic performance are established. Efficiency of the proposed control framework is illustrated by numeric simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا